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Over the past decades, increasing attention has been paid to optimal design and operation of energy
intensive industries. In this paper, a multi-hybrid model with high estimation capability has been applied
for prediction of optimum consumed power. Consumed power is the most important factor for cascade
refrigeration systems in which efficient estimation of this factor in various operating conditions is
essential. The purpose of this paper is to present a new multi-hybrid Model in which six input variables
consist of methane, ethane, propane, and nitrogen components composition along with suction and
discharge pressures have been employed in order to estimate and predict the optimal consumed power.
Having replaced by pure ethylene cycle in the olefin plant of the Tabriz Petrochemical Complex, the one
and two stage-cascade cycles are modeled continuously by the proposed model. A hybrid group method
of data handling (GMDH) along with linking between Aspen HYSYS and MATLAB software, optimized
with Genetic algorithm (GA), is herein proposed to obtain efficient polynomial correlation to estimate
optimal consumed power for these two cascade cycles. Results show that the proposed multi-hybrid
model is superior to non-linear programming techniques for obtaining the optimum consumed power of
cascade refrigeration cycles and finding the values of optimizing variables.

© 2015 Elsevier B.V. All rights reserved.
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NLP techniques are used to optimize the refrigerant composition at
a given refrigerant flow rate and pressure (Lee et al.,, 2002). In
addition, application of Neural networks, particle swarm optimi-
zation, genetic and the other evolutionary algorithms, and NLP
techniques have received considerable attention in many research
fields.

(Romeo and Gareta, 2006) presented the methodology of Neural
Network (NN) design as well as application for a biomass boiler
monitoring, and they indicated the advantages of NN in these sit-
uations. Neural network monitorizing results displayed an excel-
lent agreement with real data. It is also concluded that NN is a
stronger tool for monitoring than equation-based monitoring.

(Gareta et al., 2006) demonstrated that the Neural Network
approach could be also used to forecast short-term hourly elec-
tricity pool prices. This methodology could help to improve power
plant generation capacity management. Results were tested with
extensive datasets and a good agreement is found between actual
data and Neural Network results.

(Amanifard et al., 2008a) presented a quadratic model based
upon some experimental results, using evolved GMDH-type neural
networks for modeling of the transient evolution of spiky stall cells
in an axial compressor. They concluded that the methodology
applied in this work could sufficiently derive such complex model
of unstable flow of rotating stall based on experimental
input—output data. The prediction ability of such polynomial model
has also been presented for some unforeseen data.

(Amanifard et al., 2008b) presented two metamodels based on
the evolved group method of data handling (GMDH) type neural
networks for modeling of both pressure drop (AP) and Nusselt
number (Nu). It was shown that some interesting and important
relationships as useful optimal design principles involved in the
performance of microchannels can be discovered by Pareto based
multi-objective optimization of the obtained polynomial meta-
models representing their heat transfer and flow characteristics.
They concluded that, such important optimal principles would not
have been obtained without the use of both GMDH type neural
network modeling and the Pareto optimization approach.

(Ghorbani et al., 2014a) proposed a hybrid group method of data
handling (GMDH) artificial neural network, optimized with genetic
algorithm (GA), to obtain efficient polynomial correlation to predict
oil viscosity. This correlation was compared with 5 correlations
presented in the previous research using the large set of Iranian oil
data. They also provided a comprehensive computational and sta-
tistical result to evaluate the performance of the proposed
methods. Results showed that these models were very good ap-
proximations for estimating the viscosity of crude oils.

(Ahmadi et al., 2015) proposed an intelligent approach to
determine the output power and torque of a Stirling heat engine.
The approach employs the GMDH method to develop an accurate
predictive tool for determining output power and torque of a Stir-
ling heat engine in manner that is inexpensive, fast and precise.
Consequently, based on the output results, the GMDH approach can
help energy experts to design Stirling heat engines with high levels
of performance, reliability and robustness and with a low degree of
uncertainty.

Many researches have been expended to the use of evolutionary
methods as effective tools for system identification In order to
predict and model the behavior of very complex systems based on
given input—output data (Liu and Kadirkamanathan, 1999;
Nariman-Zadeh et al., 2003; Jamali et al., 2009; Ardalan et al,,
2009; Nariman-Zadeh et al., 2005a,b). GMDH algorithm is self-
organizing approach by which complex models are generated
gradually and the main idea of GMDH is to build an analytical
function in a feed forward network based on a quadratic node
transfer function whose coefficients are obtained using regression

technique (Ivakhnenko, 1971; Ardalan et al., 2009; Jamali et al.,
2009). In addition, the use of such self-organizing networks leads
to successful application of the GMDH-type algorithm in abroad
range of areas in engineering, science, and economics (Ivakhnenko,
1971; Nariman-Zadehetal., 2002a,b). Moreover, genetic algorithms
have been recently used in a feed forward GMDH-type neural
network for each neuron searching its optimal set of connection
with the preceding layer. In the (Nariman-Zadeh et al., 2003), au-
thors have proposed a hybrid use of genetic algorithm for a
simplified structure GMDH-type neural network in which the
connections of neurons are restricted to adjacent layers (Ardalan
et al., 2009). Moreover, the use of HYSYS as the thermodynamic
model and MATLAB as the optimizer is explored, in order to opti-
mize the verified APCI LNG plant model (Alabdulkarem A et al.,
2011).

The purpose of this paper is to apply a new multi-hybrid model
i.e. GMDH neural network along with linking between HYSYS and
MATLAB software, optimized by genetic algorithm, for modeling
and predicting of optimum consumed power. In the following
sections, after defining GMDH algorithms, evolved GS-GMDH
(General structure) and CS-GMDH (Conventional structure) algo-
rithms, employed for one and two-stage cascade cycle, are clarified.

2. GMDH algorithms

The GMDH algorithms are applied in a great variety of areas for
forecasting as well as systems modeling and optimization. In
addition, the GMDH algorithm can be considered from two
different aspects, which are mathematical basis along with
modeling theory and analysis of the system. Mathematically, the
GMDH algorithm is rooted in analyzing Volterra function series to a
quadratic two-variable polynomial. In this analysis, Volterra series
is transformed into a set of chain recursive equations so that the
algebraic substitution of each recursive relation by each other re-
sults in the re-establishment of Volterra series. A mathematical
model can be represented as a set of neurons, in which different
pairs in each layer are connected through a quadratic polynomial,
so produce new neurons in the next layer. Mathematical modeling
and its equation were presented in several publications such as
(Nariman-Zadeh et al., 2003, 2005,).

In the second part, the GMDH algorithms are based on the
modeling theory and analysis of systems, according to two general
principles. The GMDH neural network is the manifestation of the
GMDH algorithm, expressed in the form of a network. The GMDH
neural network is a self-organizing, unidirectional structure with
multiple layers, each of which is composed of several neurons that
have a similar structure. Weight (w) is inserted inside each neuron
as definite and constant values based on singular value decompo-
sition method by solving normal equations (Nariman-Zadeh et al.,
2003).

Additionally, Singular Value Decomposition (SVD) is employed
to the design of such GMDH-type networks. SVD is a method for
solving most linear least squares problems that some singularities
might exist in the normal equations. The most popular technique
for computing the SVD was originally proposed in (Golub and
Reinsch, 1970).

2.1. Topology design of GMDH-type ANNs using genetic algorithm

Genetic algorithms as an evolutionary algorithm have been
widely apply for different aspects of design in neural networks
because of their unique capabilities of finding a global optimum in
multi-modal and/or non-differentiable search space (Nariman-
Zadeh et al., 2003; Jamali et al., 2009; Ardalan et al., 2009). On
the other hand, there are two types of GMDH artificial neural
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networks, which are GS-GMDH and CS-GMDH neural networks. In
the GS-GMDH neural networks Fig. 1 (a), neurons connections are
able to occur between different layers, which are not necessarily
adjacent ones. On the other hand, in the CS-GMDH neural net-
works, illustrated in Fig. 1 (b), such connections occur only between
adjacent layers (Nariman-Zadeh et al., 2003, 2005a,).

Moreover, according to Fig. 2 (a) and (b), the crossover process is
able to alter the building blocks information of such GS-GMDH
neural networks. In this way, the two types of GS-GMDH and CS-
GMDH neural networks can be altered to each other, as illus-
trated in Fig. 2 (b). In addition, mutation process is also able to
convert a GS-GMDH neural network to a CS-GMDH neural network
or vice versa (Nariman-Zadeh et al., 2003, 2005a; Madandoust
et al., 2010).

2.2. Two-target optimization using GA algorithm

Two-target optimization using GA algorithm along with
mentioned methods in the previous parts has been used in present
study in order to find optimum points. In two-target optimization
using GA algorithm, first, initial generation (pool) is produced
stochastically. After creating initial generation, children are pro-
duced by choosing from pool population. New children then are
produced and added to the pool by using crossover and mutation
function over selected population from previous step. In this point,
objective function value is calculated for all the existing population
in the pool to choose dominant answers and update Pareto set.
Next, allocating 25% of new pool with best answers of current pool
based on recovery overview and irreversibility index overview.
Finally, new pool is completed by the rest of the answers from
current pool (Salehi et al., 2012).

3. Cascade refrigeration systems
3.1. Low-temperature refrigeration cycles description

Low-temperature refrigeration system of olefin plant in Tabriz
petrochemical complex is composed of two separate closed
refrigeration cycles with pure refrigerants, which are propylene for
the first cascade, ethylene for the second cascade, and an open loop
methane cycle. Propylene cycle not only provides cooling for pro-
cess streams of olefin plant to —35° C, also it has external cooling
role as a condenser for ethylene cycle (second cascade cycle). Fig. 3
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b

Fig. 1. Network structure of a chromosome (a) GS-GMDH type (b) CS-GMDH type.

shows the second cascade cycle in refrigeration system of Tabriz
olefin plant. Pure ethylene is compressed to 20.2 bar in this cycle. As
exited superheated vapor of ethylene from compressor passes
through heat exchanger (E504), its temperature decrease to
approximately 33° C; it is then condensed by passing through heat
exchangers E505, E506 and E507. The condensed ethylene after
passing through throttle valve, its temperature and pressure is
reduced, so it can supply required cooling for feed and reflux
streams. In order to help to supply required cooling for feed and
reflux streams in the olefin plant; cooling potential of tail gas,
regeneration gas, and hydrogen rich gas, which are obtained from
demethanizer tower upstream products, are employed. Figs. 4 and
5 show One and Two-stage cascade refrigeration cycles, proposed
and simulated to replace by pure ethylene cycle of olefin plant in
Tabriz petrochemical complex (Ghorbani et al., 2014b).

3.2. One-stage cascade cycle

In this cycle Fig. 4, having compressed in compressor, the mixed
refrigerant is cooled to approximately 33° C in cooling water
condenser. Next, the mixed refrigerant is partially condensed by
passing through the pre-cooling refrigeration cycle (propylene
refrigeration cycle). It is then subcoolded in a multi-stream heat
exchanger to approximately 33 °C and expanded by passing
through throttle valve. The potential of cold stream is employed to
supply the needed cooling of the cycle (Amidpour et al., 2015).

3.3. Two-stage cascade cycle

In order to reduce temperature difference in the length of heat
exchanger, the heat transferring between cold and hot streams
could be distributed by replacing some heat exchangers connected
in series to each other. Idiomatically, each of these exchangers is
called one stage. The needed cooling of each stage is supplied by
separating the obtained vapor of each refrigerant as well as
expanding and subcooling through passing the throttle valve. Fig. 5
shows a two-stage cascade of MRRC, replaced with the presented
one-stage cascade in Fig. 4 in order to reduce the consumed power.
In this cycle, just a part of refrigerant is employed in heat trans-
ferring among all of the heat exchangers. Consequently, this subject
causes a reduction in exergy destruction among the heat ex-
changers (Amidpour et al., 2015).

3.4. Key parameters of mixed refrigerant refrigeration cycle

Achieving an efficient mixed refrigerant refrigeration cycle is
possible by selecting appropriate design parameters such as re-
frigerants composition, operation pressures, and configuration of
cycle. Operation pressures and components composition play an
important role in refrigeration cycles design (Ghorbani et al.,
2014b). Methane, ethane, propane, nitrogen discharge and suc-
tion pressure are the key parameters of mixed refrigerant cycle in
the current study, considered as input parameters for modeling of
system.

4. Modeling
4.1. Proposed multi-hybrid model

Since there are many variables involve in designing such cycle,
the optimization was carried out in two stages as shown in Fig 6. In
presented model, the correlation of each datasets is obtained from
training datasets and is tested by the testing datasets, which are
never observed throughout the training. About 90% of each dataset
is used for training in order to derive empirical equation, and the
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Fig. 2. Crossover operation (a) For two individuals in GS-GMDH networks (b) On two GS-GMDH networks.
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Fig. 3. Schematic diagram of olefin plant (ethylene cycle).

rest is used for validating the correlation. The best value that can be
obtained for this variable is equal to 1. Having used the empirical
equation, Genetic algorithm is employed to find optimum point i.e.
consumed power. There are six values consist of x; to xg according
to the obtained optimum consumed power. These six values are
ported from Genetic algorithm to Aspen HYSYS software to produce
a new value for consumed power. This step has been continued so
that the value between optimum consumed power from Genetic
algorithm and HYSYS close to zero value. In the next sections,

modeling of one and two-stage cascade cycles using CS-GMDH and
GS-GMDH will be presented, respectively.

4.2. Modeling of one-stage cascade cycle using CS-GMDH neural
networks

In this paper, six input variables and an output variable are
employed for modeling of one-stage cascade cycle using CS-GMDH
neural networks. Six variables are recognized as primary input data
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data, is just employed for testing to indicate the forecast aptitude of

Reflux Stream ~ -94 C ﬁi/\/\/\/\/\—ﬁ 97C the evolved CS-GMDH neural network model throughout the
FeedSteam  -32C _’7/\/\/\/\/\__’ 98C training process. The structure of the CS-GMDH, composed of two-
hidden layer, is illustrated in Fig. 7 corresponding to the genome
representations of y7 for cycle-consumed power.

e In this paper for one-stage cascade cycle, following constraints
N are imposed to the model:
Cooling Water  Liquid Propylene Multi-Stream E
Condenser Condensers Heat exchanger X c 1 <X1< 3
]
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2 10<x5 <35
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Tail Gas -35C dpmm—————————— VNNV, 102C

Fig. 4. Schematic diagram of One-stage cascade cycle.
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Fig. 6. Proposed optimization approach.

(nitrogencomposition,x;; methane composition,x;; ethane
composition, x3; propane composition, x4; discharge pressure, xs;
suction pressure, xg;) and an output data y, representing consumed
power of cycle. There are 520 datasets consist ofx; to xg, employed
in this modeling. In addition, Pinch temperature difference in heat
exchangers for this model should be more than 5 degree of Celsius,
so this constraint is imposed to the Aspen HYSYS software. These
datasets have been divided into training and testing sets to validate
the forecast aptitude of the CS-GMDH neural networks. The
training set, consisting of 468 out of 520 data, is employed for
training and the rest i.e. testing set, comprising of 52 unanticipated

Fig. 7. Evolved structure of CS-GMDH neural network for One-stage cascade.
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a4 = —0.089132329367484%103
aj5 = —0.058169371580979%103
a;5 = 0.000812926401922%103
a;; = 0.000441474506898*103
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ag = 42.275173224080554

ag = 0.940717735872928

a10 = —0.343464379258053
a;; = —0.000160585188215
a13 = —0.011834029744969

a13 = 3.857217584954775%103
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ay5 = —0.000095481826041
0y = 0.004485999586462

a3p = —0.004029456499207
a3 = —200.028723444604077
a3, = —14.678137923007075
a33 = 16.215213719866817
a34 = 0.008010261219108

a35 = —0.001580248568533
a3s = —0.006798579385741
a3, = 0.000075376410827

a3 = 4.656166636569426

a39 = —4.224706505475592
dao = —0.001211681992975

a4 = —0.000258164067726

Y2 = a7 + (Ag*X4) + (Ag*Xs) + (am*(x ) + (011*(X5>) + (A12%X4%Xs)

Y3 = 13 + (@14#X3) + (A15%X4) + (%6*(’@)) + (‘117*(&21)) + (a18#X3+Xyq)

V4 = G19 + (d20+X2) + (G21%X6) + 022*(X%>) + <¢123*(X%)> + (G24%X2+Xg) (1)
Vs = l5 + (A26+Y1) + (A27+Y2) + <028*<Y%)) + (@9*(3’%)) + (a30%Y1*Y2)

Ve = G31 + (a32+y3) + (a33%Y4) + (‘134*(3%)) + (035*(3"21)) + (aze*xy3+yyq)

Y7 = 037 + (a3g*Ys) + (a39+Yg) + (‘140*(3/%)) + (‘141*(3/%)) + (a42%Y5+Y6)

which are discharge and suction pressure, respectively. Besides, y1
toyg are quadratic description of their correspond neurons in Fig. 7.

Fig. 8 depicts training and testing datasets of consumed power
for one-stage cascade cycle. Not only does this CS-GMDH model
have brilliant behavior, but also this model in terms of simple
polynomial equations are able model and forecast properly the
output of testing data that has not been employed throughout the
training process as well Fig. 8.

4.3. Modeling of two-stage cascade cycle using GS-GMDH neural
networks

Input and output data for two-stage cascade cycle are precisely
the same as one-stage cascade cycle except for the amount ofxj,

considered as a constant input data. There are 478 datasets consist
—+— DataSet 90% Dataset 10% Dataset

—&— Predicted Training Set Testing Set
1800 T T T T T T T T T T

1700

Consumed power of
refrigeration cycle (kW)

1200

1100

1000 L
0 50

1 1 1 ! 1 ! L
200 250 300 350 400 450 500

Dataset number

1 1
100 150 550
Fig. 8. Variation of consumed power with respect to input data (modeling & predic-
tion) One-stage cascade cycle.

ofx; to xg, employed in this modeling. The training set, consisting of
430 out of 478 data, is employed for training while the testing set,
comprising of 48 unanticipated data, is just employed for testing to
indicate the forecast ability of the evolved GS-GMDH neural
network model throughout the training process. The structure of
the GS-GMDH, composed of two-hidden layer, is illustrated in Fig. 9
corresponding to the genome representations of ys for cycle-
consumed power.
In this paper, following constraints are imposed to the model:

1<x1<3

Xy = 17.8

25<x3<55

Fig. 9. Evolved structure of GS-GMDH neural networks for Two-stage cascade cycle.
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30<x4<50
X1 +Xp + X3+ X4 =100
600 <x5<1700

120 <x6 <300

Thus, corresponding polynomial representation of the model for
two-stage cascade are drown as follows:

a; = 2.336916511522821%103
a, = 0.98113831449360%10°

a; = —0.039266213993667*10° a;5 = 0.000431079045985
a, = —0.013169619440759*10% a9 = 0.008303133867361
as = 0.000559251649690%10°  a, = 2.373381544787244
ag = —0.000131832607699*10% a,; = 5.979125782315280
a; = 5.842567259372625%10°

aj6 = 0.000464905272013

a;7 = —0.000452494508917

ay; = —0.000605105672830

Table 1

Accuracy of consumed power correlations for prediction.
Correlation E, E, r
One-stage cascade cycle 0.948699 1248.974 0.948202
Two-stage cascade cycle 0.958893 1192.918 0.925382

Fig. 10 depicts training and testing datasets of consumed power
for one-stage cascade cycle using GS-GMDH neural networks. Not
only does this GS-GMDH model have wonderful behavior, but also
the evolved GS-GMDH neural networks in terms of simple poly-

ag = —0.103305610279551%103
ag = —0.138206142026768+103
ajo = 0.000765824291461%103
a;; = 0.00131196086815%103
a;, = 0.001491636794569%103
a3 = 0.002548245742804

a4 = —2.041234451481583
ajs = 2.278697042946432

ay3 = 0.008454897939899
Gy = —0.005948147482195
ay5 = —600.003283302532715
ay5 = 7.402691626854500

57 = —6.914074617506103
asg = —0.000254542035099
s = 0.003713972725346

asg = —0.003175447549008

(G17*(Y%)> +(
)+ ()
(azs(v3)) + ¢

Q9% yﬁ))

where x; toxs are components composition, along withxs and xg
which are discharge and suction pressure, respectively. Besides, yq
toys are quadratic description of their correspond neurons in Fig. 9.

—+— DataSet 90% Dataset 10% Dataset

—&— Predicted Training Set Testing Set
2200 T T T T T T T T T

2100 - 4
2000 - 4
19004,
1800 %

1700

1600 - B

Consumed power of
refrigeration cycle (kW)

1500 - 1

1400 - 1

1300 - B

1200 L L L L L L L L L
0 50 100 150 200 250 300 350 400 450 500

Dataset number

Fig. 10. Variation of consumed power with respect to input data (modeling & pre-
diction) Two-stage cascade cycle.

+ (a12#X3%Xg)
a13+X5%Y1) (2)
4%y *Xg)

a30+Y3+Y4)

nomial equations are able well model and forecast the output of
testing data that has not been employed throughout the training
process.

5. Optimization results

In this section, optimization results of one and two-stage cas-
cades are discussed through using proposed approach in Fig. 6. The
correlation of each datasets is obtained from training datasets and
is tested using the testing dataset, which are never observed
throughout the training. About 90% of each dataset is used for
training and the rest is used for validating the correlation. The
result of these correlations for one and two-stage cascades, tested
using the available data, is depicted in Table 1.

In Table 1, E,, Ej, and r stand for mean absolute relative error,
mean relative error, and correlation coefficient, respectively. The
values of these variables are attained using the equations in
Appendix A. The correlation coefficient also known as r is a mea-
sure of the strength and direction of the linear relationship be-
tween two variables. The best value that can be obtained for this
variable is equal to one. Unless this variable is acquired to be closer
to one, correlation performance will be reduced consequently. Ac-
cording to the results in Table 1, the r-value of present study
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Fig. 11. Variation of cycle COP with respect to components composition (One-stage
cascade cycle).

correlation for one-stage cascade cycle almost closer to one in
comparison with two-stage cascade cycle.

Figs. 11 and 12 show the variation of one-stage cascade cycle
COP and consumed power in terms of methane composition,xy;
ethane composition, x3; respectively. In Fig. 11, optimum consumed
power is equal to 1064.59, occurred in x; = 31.09 andx3 = 35.6.

Fig. 13 shows variation of consumed power in terms of different
amount of propane component. It is obvious that by increasing of
different amount of propane, the consumed power will be increase
consequently. The optimum amount of propane is equal to 32.2.

Figs. 14 and 15 show the cycle consumed power variation with
respect to suction and discharge pressure for one and two-stage
cascade cycle, respectively. According to Fig. 14, optimum
consumed power for one-stage cascade is equal to 1064.59 kW,
occurred in minimum pressure i.e. 272.667 kPa. On the other hand,
according to Fig. 15, optimum consumed power for Two-stage
cascade is equal to 1023.674 kW, occurred in maximum pressure
i.e. 1349.18 kPa.

Optimum values for one and two-stage cascade cycles using
presented model in this paper are illustrated in Table 2. In order to
evaluate and compare this model, the results of (Amidpour et al.,
2015) are presented in Table 3. Optimized operation parameters
and consumed power for one and two-stage cascade cycles, based
on a combination of mathematical methods and thermodynamic
viewpoints, is obtained by non-linear programming techniques
(Table 3). The supremacy of the presented model in this paper over
NLP programming techniques is completely clear when it comes to
consumed power. The consumed power of one-stage cascade was

Power (kW)

40 ey % 20 Methane(mol %)

Ethane (mol %)

Fig. 12. Variation of cycle consumed power with respect to components composition
(One-stage cascade cycle).
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Fig. 13. Variation of optimized consumed power with respect to propane composition
(One-stage cascade cycle).
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Fig. 14. Variation of optimized consumed power with respect to suction pressure
(One-stage cascade cycle).

2000
1900
1800
1700

1600

Power (kW)

1500

1400

1300

1200

1100

1000 1 1 L 1 1 )
600 800 1000 1200 1400 1600 1800

Pmax (kPa)

Fig. 15. Variation of optimized consumed power with respect to discharge pressure
(Two-stage cascade).
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Table 2
Optimum values for one and two-stage cascade cycles using presented model.

31

Cycle Configuration Composition (mol%)

Operation pressure of Consumed power of cycle (kW)

cycle (kPa)
Nitrogen Methane Ethane Propane Discharge Suction
One-stage cascade 1 31.09 35.63 32.27 649.91 272.66 1064.59
Two-stage cascade 1 17.8 35.1 46 1349.18 146.43 1023.67

Table 3

Optimized parameters for one and two-stage cascade cycles using NLP techniques (Amidpour et al., 2015).

Cycle Configuration Composition (mol%)

Operation pressure of cycle Consumed power of cycle (kW)

(kPa)
Nitrogen Methan Ethane Propane Discharge Suction
One-stage cascade 1 24 45 30 800 260 1239
Two-stage cascade 1 15 41 43 600 140 1230

declined from 1239 to 1064.59 kW. The same is true for the other
cycle, so the consumed power of two-stage cascade was declined
from 1230 to 1023.67 kW.

6. Conclusion

In this paper, the proposed multi-hybrid model with six input
variables consist of nitrogen, methane, ethane, and propane com-
ponents as well as discharge and suction pressure were employed
to predict the optimum consumed power of two presented cascade
cycles. The consumed power correlation was obtained for each
cascade cycle. This correlation was trained and tested by a dataset
with a wide range of input parameters. Genetic algorithm was then
employed to optimize the correlation parameters for better per-
formance. Results showed the proposed hybrid-model has corre-
lation coefficient about 0.94 and 0.92 for one and two-stage cascade
cycles, respectively. In addition, the accuracy of proposed model is
compared to one well-known optimization method. Results
showed that the proposed multi-hybrid model was superior to
non-linear programming techniques for obtaining the optimum
consumed power of cascade refrigeration cycles and finding the
values of optimizing variables. In addition, the presented multi-
hybrid model provides a saving of about 174.41 kW and
206.33 kW energy as compared with the NLP optimized case ob-
tained for one and two-stage cascade cycles, respectively.

Nomenclature

Percent relative error

Percent mean absolute relative error
Percent mean relative error
Standard deviation

Number of data points

Correlation coefficient

Mean value

Observation index

~ X" 5 wnmmm

Appendix A. Statistical analysis

1. Percent relative error

E; = (M) x 100(i = 1,2,...,n)
Xexp i

2. Percent mean relative error

3. Percent mean absolute relative error

n

1
—= > IE

i=1

Eq

4. Standard deviation

5. The correlation coefficient

n n
r= 1- Z [Xexp - XestL‘z/ [Xexp - )_QIZ

i=1 i=1

where
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