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Nomenclatures

E; Percent relative error

E, Percent mean absolute relative error
E; Percent mean relative error

Standard deviation
Number of data points
Correlation coefficient
Mean value
Observation index

O I

Shirmohammadi et al. (2015) employed a hybrid group method
of data handling (GMDH) along with linking between Aspen HY-
SYS and MATLAB software, optimized with Genetic algorithm (GA),
to obtain efficient polynomial correlation to estimate optimal
consumed power for two cascade refrigeration cycles.

Ghorbani et al. (2014) proposed a GMDH artificial neural net-
work, optimized with genetic algorithm (GA), to obtain efficient
polynomial correlation to forecast oil viscosity. The obtained cor-
relations were compared with previous research correlations using
the large set of Iranian oil data. They also provided a comprehensive
computational and statistical result to assess the performance of the
proposed methods. Results illustrated the hybrid model had very
good behavior for estimating the viscosity of crude oils.

Hemmati-Sarapardeh et al. (2013) evaluated the most fre-
quently used oil viscosity correlations using a large databank of
Iranian oil reservoirs. They recommended three of the most ac-
curate correlations for each region, comprising dead oil viscosity,
viscosity below bubble point, viscosity at bubble point and the
under saturated oil viscosity, for Iranian oil reservoirs. Ultimately,
they developed four correlations for Iranian oil reservoirs which
have simplified functional format.

Hou et al. (2015) presented a model for Shanbei crude oil
blending to improve the total yield of fractions and reduce the
viscosity of the mixed crude oils.

Recently, many scholars employed the artificial neural network
to predict oil viscosity (Al-Marhoun et al., 2012; Ardalan et al.,
2009; Ghaderi, 2012; Makinde et al., 2012; Torabi et al., 2011).
Abedini (2010) also developed an empirical formula to forecast oil
viscosity. They also validated sensitivity analysis of viscosity by
diverse graphs. A correlation method for forecasting crude oil
viscosities was examined by Naseri et al. (2005).

Hajizadeh (20073, 2007b) applied genetic algorithm techniques
for predicting reservoir fluid viscosity. An impact analysis was
performed on the input parameters, which are pressure, tempera-
ture, gas—oil ratio, and oil density, indicating that the temperature
has the greatest impact on the reservoir fluid viscosity followed by
oil density, pressure and gas-oil ratio. The genetic algorithm in-
dicated prediction of viscosity with a good accuracy for testing data.

In this study, five input variables consist of oil API gravity (API),
pressure (P), saturation pressure (Py), solution gas—oil ratio (R;), re-
servoir temperature (T;) are imposed to the present multi-hybrid
model. The purpose of this paper is to obtain a relationship between
oil viscosity at reservoir pressure, temperature, and other parameters
of crude oil. The relationship can easily be achieved with PVT ana-
lysis. This relation is studied in three different cases of pressure at the
bubble point, below the bubble point, and above the bubble point
pressure. The present model can obtain efficient polynomial corre-
lation to estimate oil viscosity at the aforementioned points.

2. GMDH neural networks

The GMDH algorithms can be applied in a great variety of areas
for anticipating as well as systems modeling and optimization. The
GMDH algorithm can also be considered from two different facets,
mathematical basis as well as modeling theory and analysis of the
system. Mathematically, the GMDH algorithm is embedded in

analyzing Volterra function series to a quadratic two-variable
polynomial. Volterra series is converted into a set of chain re-
cursive equations in this analysis. The algebraic substitution of
each recursive relation then can results in the re-establishment of
Volterra series. A mathematical model can be characterized as a
set of neuron. Dissimilar pairs in each layer are linked by a
quadratic polynomial to produce new neurons in the next layer.
Identification problem can be defined to find a function fA that can
forecast outputﬁ for an assumed input vector X = (X, X2, X3, ... , Xn)-
The definite output can be defined as follows: (Nariman-Zadeh
et al., 2003; Nariman-Zadeh et al., 2005)

Vi =f @i, Xiy Xz, o Xin) ((=1,2,3, .. M) 1)

GMDH is then assumed vector

A
X = (X1, Xi2, Xi3, - , Xin) to forecast the output values f; as follows:

trained by input
A
5}14 =f Xi1, Xi2, Xi3, ., Xin) (=1,2,3,..M) (2)

The squared difference between the definite and anticipated
output can be minimized as:
M . 2
> [f (i1, Xi2, Xi3, o Xin) —y,-] - min
i=1 3

An intricate discrete form of the Volterra series is employed to
make a general connection between input and output variables:
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Fig. 1. Network structure of a chromosome (Shirmohammadi et al., 2015). (a) GS-
GMDH type, (b) CS-GMDH type.



70

B. Ghorbani et al. / Journal of Petroleum Science and Engineering 142 (2016) 68-76

PARENT OFFSPRING
abbe|ladad abbe
abdd| —> ¢bdd adad
o)

a ab a ab
b ‘» abbe b

V abbeadad abbe
¢ c
d de

—_—

4 ab

\

b abdd abdd
o abddadad
d b)

Fig. 2. Crossover operation Shirmohammadi et al. (2015). (a) For two individuals in GS-GMDH networks, (b) on two GS-GMDH networks.
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Fig. 3. Procedure of parameters tuning by combination of GS-GMDH and GA algorithms.
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Table 1
Tuning parameters in the Genetic algorithm for viscosity below, at, and above the
bubble points.

Tuning parameters in the Genetic Algorithm for viscosity values

Tuning parameters Below At Above
Population size 365 57 287
Maximum number of generations 1095 171 861
Probability of crossover 70% 70% 70%
Probability of mutation 1% 1% 1%
Number of crossover point 2 2 2

M::
M:

n
y=a.+ ) axi+

n
Y agxix; +
1 i=1 j=1

n n
3N axixixe + ..
j=1k=1

The above mathematical depiction can be expressed by a par-
tial quadratic polynomials system comprising two variables as
follows:

1

4

I
i
-
I
-

N 2 2
y =G, Xj) = A, + MX; + MXj + A3X;” + A4X]” + As5X;X; 5)

The above-mentioned system is recursively employed to create the
general mathematical connection between input and output variables
by connected neurons. Regression techniques are employed to calcu-
late @; value in Eq. (5). The difference between actual and calculated
output variables can be minimized in terms of input variables.

The following equations are acquired for each row of M data
triples using the quadratic sub-expression in the Eq. (5).

Aa=Y (6)
a={da., aq, a, a3, a4, ds} @
I3 ®)

where Y is the vector of output values, and a is the vector of
unknown coefficients for the quadratic polynomial in Eq. (5).

Y=1{y.¥2 Y3 - Yu

a= (ATA)_]ATY (]‘1)

Eq. (11) also defines the best quadratic coefficient vector for the
entire set of M data triples. This process is reiterated in the next
hidden layer for each of the neuron with respect to the network
connectivity topology.

In the second part, the GMDH algorithms are based on the
modeling theory and analysis of systems. The GMDH neural net-
work is a self-organizing, unidirectional structure with multiple
layers. These layers are composed of several neurons, which have
an analogous structure. (Nariman-Zadeh et al., 2003).

Singular Value Decomposition (SVD) also is employed to design
of such GMDH-type networks. SVD is a method for solving most
linear least squares problems that some singularities might exist in
the normal equations. The most popular technique for computing
the SVD was proposed in (Shirmohammadi et al., 2015).

2.1. Topology design of GMDH-type ANNs using genetic algorithm

Genetic algorithms as an evolutionary algorithm is widely ap-
plied for different features of design in neural networks because of
their unique capabilities of finding a global optimum in multi-
modal and/or non-differentiable search space (Ardalan et al,
2009; Nariman-Zadeh et al., 2003; Shirmohammadi et al., 2015).

GMDH artificial neural networks can be divided into the two types
consisting of GS-GMDH and CS-GMDH neural networks. In the GS-
GMDH neural networks, neurons connections can occur between
different layers, which are not necessarily adjacent ones (Fig.1 (a)).

¢) Viscosity above the bubble point

Fig. 4. Evolved structure of GS-GMDH neural network for. (a) Viscosity below the
bubble point. (b) Viscosity at the bubble point. (c) Viscosity above the bubble point.

Whereas, in the CS-GMDH neural networks such connections occur
only between adjacent layer (Fig. 1(b)) (Nariman-Zadeh et al., 2003;
Shirmohammadi et al., 2015).

According to Fig. 2(a) and (b), the crossover process can alter the
building blocks information of such GS-GMDH neural networks. In this
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Table 2
Experimental data range for saturated and under-saturated reservoir oil viscosity.

0il properties Under-saturated Saturated
Qil API gravity 21.55-30.62 21.55-37.62
Reservoir temperature (F) 100-250 100-250
Solution gas-oil ratio (scf/stb) 302-1601 302-1601
Saturation pressure (psia) 773-5931 773-5931
Pressure (psia) 110-4790 110-4790
Saturated viscosity (cP) 0.32-6.23 0.27-4.12

way, the two types of GS-GMDH and CS-GMDH neural networks can
be transformed to each other, depicted in Fig. 2(b). Mutation process
can also convert a GS-GMDH neural network to a CS-GMDH one or
vice versa. (Madandoust et al., 2010; Nariman-Zadeh et al., 2003;
Shirmohammadi et al., 2015)

3. Presented multi-hybrid model

Overall assessment and training of the developed correlations are
carried out by a set of Iranian oil data. This sample have over 600
valid data points, measured in the laboratory, and is divided into two
general categories of saturated and under-saturated oil. In presented
multi-hybrid model in Fig. 3, the correlation of each datasets is ob-
tained from training datasets. These correlations are then tested by
the testing datasets, which are never observed throughout the
training. About 90% of each data set is applied for training in order to
derive a GS-GMDH algorithm, and the rest is used for validating the
correlation. The best value that can be gained for the variable is equal
to 1. If the appropriate value of correlation, which is more than 0.95,
is not obtained, Genetic algorithm according to range of decision
variables would generate new data stochastically and the new data

Table 3

then enter to the GS-GMDH model. Again these data herein are
employed to obtain new appropriate correlation. This step is being
continued to obtain the appropriate correlation. Tuning parameters
of Genetic algorithm, used in this study, are given in Table 1.

4. Modeling of viscosity correlation

In this paper, five input variables and an output variable are em-
ployed for modeling of viscosity below, at and above the bubble point
using GS-GMDH neural networks. The five variables are recognized as
primary input data (pressure x;; reservoir temperature, x,: Ty; solution
gas—oil ratio, x3: Rs; ; saturation pressure, x4: P, ; oil APl gravity,
Xs: ﬁ) and an output data y; representing viscosity at the
aforementioned points. The total number of available data for training
and testing the correlation viscosity below, at and above the bubble
point are 365, 287, and 57, respectively. These datasets are divided into
training and testing sets to validate the forecast aptitude of the GS-
GMDH neural networks. The training sets, consisting of 295 out of 365
data, 51 out of 57, and 199 out of 287 are employed for training and.
The rest of unanticipated data, which are testing set, are just employed
for testing to indicate the forecast aptitude of the evolved GS-GMDH
neural network model throughout the training process. The structure
of these GS-GMDH models are illustrated in Fig. 4 corresponding to
the genome representations of y; for viscosity above, at, and below of
the bubble points.

5. Correlations development

The PVT experimental data sample for South pars crude oils
located in Persian gulf is measured. The samples are tested

Accuracy of viscosity correlations for prediction of saturated oil and under-saturated oil viscosities.

Saturated oil viscosity

Viscosity at the bubble point Correlation

The present research

Ghorbani et al. (2014)
Elsharkawy and Alikhan (1999)
Khan et al. (1987)

Labedi (1992)

Kartoatmodjo and Schmidt
(1994)

Petrosky and Farshad (1995)
Naseri et al. (2005)

Viscosity below the bubble point The present research

Ghorbani et al. (2014)
Elsharkawy and Alikhan (1999)
Khan et al. (1987)

Labedi (1992)

Kartoatmodjo and Schmidt
(1994)

Petrosky and Farshad (1995)
Naseri et al. (2005)

Under-saturated oil viscosity
Viscosity above the bubble point Correlation

The present research
Ghorbani et al. (2014)
Elsharkawy and Alikhan (1999)
Khan et al. (1987)

Labedi (1992)

Kartoatmodjo and Schmidt
(1994)

Petrosky and Farshad (1995)
Naseri et al. (2005)

MAE ME N R
0.01058 0.0000104 0.8295 0.999786
12.48 —3.34 18.24 0.97
22.9413 —20.4634 20.1123 0.9245
23.52 —6.34 3112 0.78
52.05 —52.05 31.40 0.46
3245 17.44 34.88 086
81.98 —80.72 44.65 0.59
174 —13.42 2217 0.84
3.77 0.0018 0.6731 0.998
13.57 -3.15 17.49 0.96
25.60 19.77 24.10 0.74
32.01 —21.77 38.29 0.57
43.68 —42.16 30.66 0.42
4813 44.88 28.97 061
63.01 —58.24 53.54 0.65
3113 —-0.28 24.15 0.76
MAE ME S R
0.268 0.000012 0.835 0.99998
10.95 —1.88 13.95 0.98
25.60 19.77 24.10 0.74
21.54 —5.06 29.46 0.79
69.13 —69.13 77.83 0.44
31.29 14.81 36.31 0.84
77.79 —76.09 45.33 0.63
2218 —12.16 26.1 0.86
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meticulously and the values of the parameters and oil viscosity are

derived. Details of these data are presented in Table 2.
Corresponding polynomial representation of the model for

below, at, and above the bubble points are drown as follows.

5.1. Correlation A (viscosity below the bubble point)

aj = 0.000337931546373
az = -0.001333635315217
a3 = 0.032275374996351
a4 = 0.000000080783898
as = —0.000116932527696
ag = 0.000003483200329
az = 0.000000807811809
ag = —0.000723736555000
ag = 0.001409094636895
ajp = 0.000000045364010
a1 = —0.000000255641823
aj2 = 0.000000081842438

a13 = 0.000544113644141
a14 = 0.048000992942941
a15 = —0.007019341431514
a16 = -0.000139304789828
a17 = 0.000001977720890
a1g = 0.000008882914199
a19 = 206.8864269964214
a20 = —15.8304713345961
az1 = —469.0205571777403
a2 = 0.3317181804757

a3 = 266.2860343346555
a24 = 18.2045229626988

a25 = 1.374532651981907
az6 = —0.255856232982096
a27 = —2.037505012534430
azg = 0.267194898862199
az9 = 0.897305673222649
a30 = 0.446318035238129
a31 = -0.075749452711263
a3y = 0.675970227025929
a33 = 0.513493302914362
a34 = —1.111104332836373
a35 = —1.491111541396628
a36 = 2.554896373213153

7
6
5
E_ 4
83
2
1
0
0 1 2 3 4 5 6 7
Experimental Data
(a) A Data Best Fit : R?=0.9996
4.5
4 A
3.5 4
- 3 ]
22.5 -
= i
3 2
1.5 A
l 4
0.5 1
0 T T T T
0 1 2 3 4 5
Experimental Data
(b) A Data Best Fit : R*>=0.9944

2 3 4

73

Vi = 01 + (@) + (a3%2) + (@4X3) + (AsX3) + (AsXiX2)

Vo = 07 + (GgX1) + (G9X4) + (G10XD) + (@11XF) + (G12X1X4)
V3 = (13 + (14X2) + (A15X3) + (m6X3) + (a17X3) + (A15%2X3)
V4 = Q19 + (G0Yy) + (@21X5) + (@22Y?) + (23X3) + ((24YX5)

V5 = G5 + (A26Y,) + (G27Y3) + (G28Y3) + (G29Y3) + (A30Y5Y3)

Vo = 031+ (@32Y,) + (@33Y5) + (@34Y3) + (G35Y2) + (G36Y,4Ys)

13)

5.2. Correlation B (viscosity at the bubble point)

a1 = —31.183389387368063
a = 0.181798749071543
a3 = 10.673860212857898
a4 = 0.000155405132334

aj5 = —0.001786316222707
a16 = —0.000160860065470
a7 = 0.000000119392139
a8 = 0.000003203602661

a9 = —0.025006098828166
asp = 0.391573469195301
azq = —0.090917734338694
a3 = 1.347417276167366

a19 = 0.000286837182742 x 10~3
a0 = 0.429620545720711 x 103
ap1 = 0.429571111735315 x 103
a2 = 0.124260766565365 x 103
a3 = —0.124382641561403 x 103
a4 = —0.000055966487397 x 10~3

as = 40.038755066963596
ag = —0.290449098807766
a7 = 1.587581970835337
ag = —0.003884000614357
ag = 1.451213804334380
ajp = 0.000002554956176

a33 = 0.721539749866243
a34 = —0.023668760832523
a35 = —0.613947627269250
a36 = -0.385490007505575
a37 = —0.067498809537418
a3g = 0.855880377039213

a11 = 1.327303762920488
a1 = —0.002531529941764
a13 = 0.000471283986428
a4 = 0.048009365045462

a5 = 0.292339129785307
a6 = 0.125003313025905
az7 = 0.065020195055927

a39 = 0.258293037113344
a40 = 0.018881140075907
a41 = —0.086493617753540
a4y = 0.031170191767327

(c) Experimental Data
A Data Best Fit : R>=0.9999

Fig. 5. Scatter diagram based on presented approach in terms of correlation coef-
ficient (R?). (a) Viscosity below the bubble point. (b) Viscosity at the bubble point.
(c) Viscosity above the bubble point.

azg = 0.041704131056989

Vi = a1+ (G2X2) + (G3Xs) + (A4X3) + (A5X2) + (A6X2Xs)
Y2
Y3
Vs = Gig + (G20X1) + (G21X4) + (@22X]) + (@23XF) + (G24X1Xa)
V5 = s + (A26Yy) + (G27Y5) + (@28Y%) + (@20¥3) + (A30¥1Y5)
Vo = 031+ (A32Y3) + (@33Yy) + (A34Y3) + (A35Y3) + (G36Y3Ys)

V7 = G37 + (A38Y5) + (G30¥6) + (A40V2) + (An1Y2) + (A42Y5Y6)

a7 + (AgX3) + (A9Xs) + (A10X3) + (A11X3) + (G12X3X5)

a13 + (G14X2) + (@15X4) + (A16X3)) + (@17X3) + (G18X2X4)

14

5.3. Correlation C (viscosity above the bubble point)

aj = 0.000310658574963
ap = -0.000981246034527
a3 = 0.034005835970458
a4 =0.000000102976463
as = -0.000089197699499
ag = —0.000000144310595
a7 = 0.000436356306926
ag = 0.045829495958338
ag = -0.006663856121786
ajp = —0.000127544730546
a1 = 0.000002788372711
aj2 = 0.000001200366564

a3 = 1.442113843114434
a4 = -0.000808250406804
ajs5 = 1.325460888022515
aje = 0.000002201405107
a7 = 1.219428706124075
aig = —0.005205629557690
ajg = 0.523706291515310
azp = —0.145808969188804
a1 = 0.048747477033081
ayp = 0.069361133770155
a3 = 0.558113614915075
a4 = —0.214773533377629

a5 = 0.043019149927751
a6 = 0.160705017685681
a7 = 0.001077567307166
azg = 0.487102977770925
a9 = —0.000000537410482
azp = —0.000440674397776
a3z1 = —-0.053230296206319
a3y = 0.116728945391372
a33 = 1.033591347286540
az4 = —0.525719401610591
a3s = —1.227412545950404
a3e = 1.689369636278221

Vi =@+ (@X) + (@G%) + (@4X]) + (GsX3) + (A6XiX2)

Yo = @7 + (Ag%2) + (A9X3) + (A10X3) + (A11X3) + (A12X2X3)
V3= (i3 + (G14X3) + (A15X5) + (@16X3)) + (@17X3) + (G18X3Xs)
Va4 = 19 + (A20Y7) + (A21Y,) + (azzﬂ) + (azayi) + (@24Y41Y,)
Vs = o5 + (G26Y3) + (A27X3) + (@28Y3) + (G20X3) + (G30Y3X3)

Vo = 031+ (@32Y,) + (A33Y5) + (@34Y3) + (G35Y2) + (G36Y4Ys)

(15)

where x; to x5 are five input variables consisting oil API gravity,
reservoir temperature, solution gas-oil ratio, pressure and sa-
turation pressure, respectively. Besides, y; to y; are quadratic de-
scription of their correspond neurons in Fig. 4.
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6. Results and discussion

In this section, correlations results of viscosity below, at, and
above the bubble points are discussed through using proposed
approach in Fig. 3. The result of correlations and other previous
correlations that are tested using the available data are shown in
Table 3. The values of MAE, ME, S, and R are achieved by the
equations in Appendix A. Relationship between two variables can
be measured by correlation coefficient, and unity is the best value
that can be gained for the variable. The correlation coefficient of
the study is almost equal to 1 as tabulated in Table 3. It can be
concluded that there is a remarkable difference between correla-
tion coefficient of this study and the previous ones. The proposed
correlations also provide better results in comparison with the
other correlations, which are evaluated in the study.

The divergence between obtained outputs of the presented
model and corresponding experimental data are presented in
Figs. 5 and 6. The obtained results of the presented model for

—&—Experimental —&#— pridicted
8
Training set Testing
— _
7 e
6
= 5
@
g4
2
>3
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1
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2z 5
84
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Fig. 6. The comparison between the presented model outcomes and real values of
viscosity at bubble point. (a) Viscosity below the bubble point. (b) Viscosity at the
bubble point. (c) Viscosity above the bubble point.

viscosity below, at and above the bubble points is according to the
line Y=X, representing good precision. Correlation coefficient (R?)
of the above-mentioned line represents the strength of the model.
The best value that can be obtained for this variable is equal to 1.
Fig. 6 depicts training and testing datasets for predicting of Iranian
crude oils viscosity. Not only does this GS-GMDH model, combined
by genetic algorithm, have brilliant behavior, but the model in
terms of simple polynomial equations are able to model and
forecast properly the output of testing data that are not employed
throughout the training process as well.

Relative deviation of the obtained output values of presented
model using experimental values is illustrated in Fig. 7. In addition,
relative deviations of the determined viscosity values by presented
model in terms of pressure values is depicted in Fig. 8. Figs. 7 and 8
can show performance of the evolved presented model.

The comparison between the correlation coefficient of the
presented model and the seven aforementioned models are illu-
strated in Fig. 9. Since there is considerable difference between the
correlations values of presented model and the seven others stu-
dies, according to Fig. 9 it would not be wrong to come to the
conclusion that presented model has superiority over the other
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Fig. 7. Relative deviations of the determined viscosity values by presented model
using experimental values. (a) Viscosity below the bubble point. (b) Viscosity at the
bubble point. (c) Viscosity above the bubble point.
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discussed models for estimating and predicting of the viscosity of
Iranian crude oils.

Sensitivity analysis also is carried out to determine the influ-
ence of oil API gravity and pressure on the viscosity below the
bubble point. The viscosity data are plotted in terms of reservoir
temperature in Figs. 10 and 11 with respect to pressure and oil API
gravity. Constant temperatures are depicted by the similar color.
Fig. 10 illustrates that the slop of viscosity in terms of pressure (0-
6000 psi) is first increased isothermally and linearly, and it is then
reduced. Fig. 11 shows that the values of viscosity in terms of oil
API gravity is first linearly increased for different constant tem-
perature, and it is then declined.

7. Conclusion

In this paper, a multi-hybrid model is employed to predict the
viscosity of Iranian crude oils. The viscosity correlations are ob-
tained for each below, at, and above bubble points. These corre-
lations are trained and tested by a data set with a wide range of
input parameters. Genetic algorithm is then employed to generate
new data stochastically and the new data then enter to the GS-
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Fig. 8. Relative deviations of the determined viscosity values by presented model
in terms of pressure values. (a) Viscosity below the bubble point. (b) Viscosity at the
bubble point. (c) Viscosity above the bubble point.

GMDH model. This process is occurred in the range of decision
variables. The proposed multi-hybrid-model has presented ideal
correlation. The obtained correlations coefficient are about 0.9996,
0.9944, and 0.9999 for below, at, and above the bubble points,
respectively. In addition, the accuracy of proposed model is com-
pared to seven well-known models. Results show that the pro-
posed multi-hybrid model has considerable superiority over the
other models for estimating the viscosity of Iranian crude oils. This
paper can trigger further implications to predict oil physiochem-
ical properties more appropriately.
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Fig. 9. Comparison between obtained correlation in different studies and pre-
sented study. (a) Viscosity below the bubble point. (b) Viscosity at the bubble point.
(c) Viscosity above the bubble point.
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Appendix A. Statistical analysis
1. Percent relative error
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