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A B S T R A C T

High-order Flux Reconstruction (FR) schemes can be used to simulate unsteady turbulent flows using Large
Eddy Simulation (LES) and Direct Numerical Simulation (DNS) in the vicinity of complex geometries. However,
the application of FR can be limited by non-linear instabilities, which can arise from oscillatory behaviour of the
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1. Introduction

As identified in the National Aeronautics and Space Administration
(NASA) Computational Fluid Dynamics (CFD) Vision 2030 report [1], it
is expected that the design of next-generation aircraft will rely increas-
ingly on scale-resolving simulations, such as LES and DNS. However,
current industry-standard CFD tools for scale-resolving simulations of
unsteady compressible flows are predominantly based on Finite Volume
(FV) methods, mainly due to their stability properties, with second-
order accuracy in space [2]. Hence, they require a relatively large
number of points per wave for LES/DNS, resulting in high compu-
tational cost relative to high-order methods [3]. Also, while the FV
method works well on unstructured meshes in the vicinity of complex
geometries, it is dominated by point-wise indirect memory access,
making this method memory bandwidth bound. Hence, it has been
observed that the FV method typically achieves approximately 3%
of peak Floating Point Operations per second (FLOP/s) on modern
hardware accelerators [4], motivating the development of high-order
methods that are suitable for unstructured meshes on massively parallel
hardware architectures. However, current high-order methods require
improved stability properties for widespread industrial adoption, which
is the objective of this work.

As noted, LES benefits from high-order accurate numerical schemes
due to their temporal and spatial resolution [5]. In addition, methods
suitable for unstructured meshes are appealing, due to their suitability
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tion of the solution. In this paper, we explore filtering and its parametrization
ulations of the Navier–Stokes equations. A new exponential filtering operator
d by the time-step size and designed to filter high-frequency modes. Over
erformed to obtain an optimal set of filtering parameters, with the objective
ing high-order accuracy. We then verify that these optimal filters converge
problems, and compare filtered and unfiltered simulations of the Taylor–
and curved meshes, and turbulent channel flow. These demonstrate that the
ore accurate than unfiltered ones, while still stabilizing previously unstable
rate the utility of these filters for more complex flows, specifically a stalled
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for complex geometries. The high-order Finite Difference (FD) meth-
ods are widely used for both CFD and computational acoustics [6,
7]. The accuracy of high-order FD methods is investigated on non-
uniform grids and concluded that the high-order FD schemes are more
sensitive to grid quality rather than the low-order counterparts [8].
Moreover, Guermond et al. [9] proposed a second-order accurate, in
space, continuous finite-element method for approximating non-linear
scalar conservation equations. Chavent and Cockburn [10] modified the
explicit Discontinuous Galerkin (DG) method, introduced by Chavent
and Salzano [11], to solve scalar conservation laws using second-order
accuracy in space. DG methods are based on a class of schemes intro-
duced by Reed and Hill [12]. Cockburn and Shu [13–17] used DG finite
element methods for space-discretization and Runge–Kutta schemes
for time-discretization for high-order RKDG schemes, in a series of
papers, for solving hyperbolic conservation laws up to any order of
formal accuracy and on unstructured meshes. In DG, the approximate
numerical solution is decomposed spatially into different elements, and
spectrally within each element as a summation of piecewise continuous
polynomial basis functions. The Spectral Difference (SD) method was
later introduced by Kopriva et al. [18] and generalized by Liu et al. [19]
and Wang et al. [20] to solve conservation laws on unstructured grids.
Later, Wang [21] introduced the Spectral Volume (SV) method as a
high-order accurate approach for fully unstructured grids. DG and SV
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methods are based on the integral form of the governing equations and
SD is based on the differential form. Recently, Huynh [22] introduced
the FR approach, which is a single framework capable of recovering ex-
isting schemes such as DG [23], SV, and SD, and also formulating new
schemes with different stability and accuracy properties [24]. Similar
to SD, FR is derived via the differential form of the governing equa-
tions. The FR approach has proven to be accurate for scale-resolving
simulations, such as DNS, LES, and Implicit LES (ILES) [25,26] for
complex unsteady turbulent flows [27–31]. In the case of ILES, the
numerical dissipation of the FR approach acts as a built-in Sub-Grid
Scale (SGS) model [25,26] in conjunction with appropriate high-order
time-stepping approaches [32,33].

While the utility of high-order methods, such as DG, SV, SD, and FR,
have been demonstrated for scale-resolving LES/DNS, their non-linear
stability properties are typically less robust than those of lower-order
methods. High-order schemes are usually more sensitive to numerical
instabilities due to their relatively low numerical dissipation. These
numerical instabilities, mainly arising from non-linear behaviour of
the governing equations, can be dealt with using different techniques.
Aliasing error discussed by Phillips [34], is known as one of the sources
of instability in non-linear problems, which arises in the projection
of the flux polynomial into a lower-dimensional space. In DG and
FR methods, a finite set of basis functions is used to construct a
numerical solution within each cell. Applying these methods to non-
linear equations can generate these so-called aliasing errors, where
the unresolved modes are aliased into lower modes [5]. Kirby and
Karniadakis [35] introduced de-aliasing for unstructured grids. Spiegel,
Huynh, and DeBonis [5] studied over-integration, as a de-aliasing
technique, for FR using LES, and showed that over-integration reduces
aliasing error. Jameson et al. [36] showed that by employing an exact
L2 projection, instead of a collocation projection, to construct the
approximation of the flux polynomial, aliasing-driven instabilities will
be eliminated; however, performing an L2 projection is more expensive
in terms of the computational cost. Entropy stable schemes can also be
used to deal with non-linear instabilities; however, constructing such
schemes is generally challenging and computationally expensive [37].
In problems containing shock waves, a shock-capturing method can be
used. Persson and Peraire [38] introduced a shock-capturing method
for DG inspired by the early artificial viscosity methods [39]. Burbeau,
Sagaut, and Bruneau [40] introduced a problem independent limiter
capable of capturing strong shocks while preserving the accuracy of
the DG method in smooth regions. Another approach to stabilization
is filtering, which aims to damp spurious oscillations that arise due
to aliasing, discontinuities, or under-resolution. Trojak et al. [41] have
studied the effects of filtering on both semi- and fully-discrete schemes,
showing the effectiveness of filtering in temporal stabilization with a
mild reduction in the order of accuracy of the method. Recently, Park
et al. [42] compared modal filtering [43] and de-aliasing [44] on high-
order ILES of a flow over a NACA0021 airfoil. They concluded that
filtering degrades solution accuracy; however, its computational cost
is significantly less than de-aliasing. In summary, different instabilities
require different stabilization techniques. For example, limiters and/or
artificial dissipation can be used to stabilize shocks/discontinuities, and
instabilities resulting from under-resolved simulations can be dealt with
using de-aliasing and/or filtering techniques. These techniques might
be used in combination when different instabilities are observed, or
additional stabilization is required. Hence, popular stabilization tech-
niques include de-aliasing, limiters, artificial dissipation, and filtering,
among which the first two have relatively high computational cost.
De-aliasing utilizes more quadrature points to approximate the flux
function more accurately. Limiters need to evaluate a set of predefined
slopes to find the troubled elements to limit cell averages. And artificial
dissipation, being a competitor to filtering in terms of computational
cost, needs a sensor to find discontinuities and damp spurious oscilla-
tions. This sensor is an additional cost since it requires integration over
2

an element for the indicator, depending on whether this is performed
every Runge–Kutta stage or once per time-step [38]. In contrast, filter-
ing typically has negligible computational cost. However, as shown by
Park et al. [42], it can have detrimental effects on accuracy. Hence, it
remains to be shown whether filtering operators can be designed such
that they stabilize the solution, while maintaining accuracy.

The objective of this research is to introduce a new accuracy pre-
serving filtering technique for stabilization of high Reynolds number
flows using high-order spatial discretizations. In Section 2, FR is ex-
plained, and filtering is discussed in Section 3. These filters are then
optimized to maintain stability in the context of the TGV at an infinite
Reynolds number. Then, the super-accuracy of these optimal filters is
verified via non-linear isentropic vortex advection in Section 4, and
these optimized filters are validated for a set of benchmark LES cases in
Section 5. These include ILES of the TGV, turbulent channel flow, and
a stalled NACA0020 airfoil. Finally, conclusions and recommendations
for future work are given in Section 6.

2. Flux Reconstruction

The FR approach, a high-order accurate numerical method first
introduced by Huynh [22], is appealing due to its accuracy, generality,
robustness, and suitability for modern hardware architectures [2]. In
comparison to common low-order numerical methods, FR provides
more accurate solutions using fewer total number of Degrees of Free-
dom (DoF) at a reduced computational cost [3]. As mentioned pre-
viously, FR is a unifying approach that can recover existing schemes
such as the SD, SV, and DG methods, for linear equations. As with
the SD and DG approaches, FR makes use of a high-order polynomial
basis to represent the solution on each element. The one-dimensional
formulation of the FR framework is explained here, along with its
extension to multiple dimensions [45].

2.1. One-dimensional formulation

Consider a 1D general conservation law of the form
𝜕𝑢
𝜕𝑡

+
𝜕𝑓
𝜕𝑥

= 0, (1)

where 𝑢 = 𝑢(𝑥, 𝑡) is the conserved scalar quantity, 𝑡 is time, 𝑓 = 𝑓 (𝑢) is
the flux of 𝑢 in the 𝑥 direction, and 𝑥 is the spatial coordinate. The com-
putational domain, 𝛺, is partitioned into a mesh of 𝑁𝑒 non-overlapping
elements such that

𝛺 =
𝑁𝑒
⋃

𝑘=1
𝛺𝑘,

𝑁𝑒
⋂

𝑘=1
𝛺𝑘 = ∅, (2)

where 𝛺𝑘 = {𝑥 ∣ 𝑥−𝑘 < 𝑥 < 𝑥+𝑘 }, and 𝑥−𝑘 and 𝑥+𝑘 are the left and right
boundaries of 𝛺𝑘, respectively. The exact solution, 𝑢, is approximated
initially within each element via a solution polynomial of degree  ,
interpolated using a set of 𝑁𝑝 = +1 discrete solution points. Similarly,
the exact flux, 𝑓 , within each element, 𝛺𝑘, is approximated by a flux
polynomial of degree  + 1, that is continuous across cell interfaces.
Hence, the total numerical solution, 𝑢𝛿 , and flux, 𝑓 𝛿 , can be represented
as the direct sum of their element-wise approximations 𝑢𝛿𝑘 and 𝑓 𝛿𝑘 ,

𝑢 ≈ 𝑢𝛿 =
𝑁𝑒
⨁

𝑘=1
𝑢𝛿𝑘, 𝑓 ≈ 𝑓 𝛿 =

𝑁𝑒
⨁

𝑘=1
𝑓 𝛿𝑘 . (3)

The solution polynomial within each element is interpolated using
nodal basis functions, ensuring element-wise continuity of the solution,

𝑢𝛿𝑘(𝑥, 𝑡) =
𝑁𝑝
∑

𝑖=1
𝑢𝛿𝑘,𝑖𝜙𝑖(𝑥), (4)

where 𝑢𝛿𝑘,𝑖 is the numerical solution at point 𝑖 within element 𝛺𝑘, and
𝜙𝑖(𝑥) is the nodal basis function at point 𝑖. The nodal basis functions
in 1D are the well-known Lagrange polynomials, shown in Fig. 1 and
defined as
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Fig. 1. Lagrange polynomials for  = 5 using Gauss points, in a reference element
[−1, 1].

L𝑖(𝑥) =
𝑁𝑝
∏

𝑗=1,𝑗≠𝑖

𝑥 − 𝑥𝑗
𝑥𝑖 − 𝑥𝑗

. (5)

The flux at every point is computed using the approximate value of
the solution at that point, i.e., 𝑓 𝛿𝑘,𝑖 = 𝑓

(

𝑢𝛿𝑘,𝑖
)

. In the case of non-
linear conservation laws, the flux polynomial is approximated using the
Lagrange interpolation polynomial,

𝑓 𝛿𝐷𝑘 (𝑥, 𝑡) =
𝑁𝑝
∑

𝑖=1
𝑓 𝛿𝑘,𝑖L𝑖(𝑥), (6)

where 𝑓 𝛿𝑘,𝑖 = 𝑓
(

𝑢𝛿𝑘,𝑖
)

is the numerical flux value at point 𝑖 within
element 𝛺𝑘.

The constructed numerical flux function, 𝑓 𝛿𝐷𝑘 (𝑥, 𝑡), is generally dis-
continuous across cell interfaces, and the superscript 𝐷 denotes this
discontinuity. The flux function is required to be continuous across cell
interfaces to satisfy conservation [24]. To address this discontinuity
of flux function, Huynh [22] proposed a reconstruction for the flux
function. The new reconstructed and continuous flux function must be
of degree  + 1. Therefore, its spatial derivative will be in the same
polynomial space as the temporal derivative of the numerical solu-
tion polynomial. The reconstructed flux polynomial must approximate
𝑓 𝛿𝐷𝑘 (𝑥, 𝑡), and at the interfaces of each element must take on the value
of common Riemann fluxes, i.e.,

𝑓 𝛿𝑘
(

𝑥−𝑘
)

= 𝑓𝑅
(

𝑢𝛿𝑘−1
(

𝑥−𝑘
)

, 𝑢𝛿𝑘
(

𝑥−𝑘
))

≡ 𝑓𝑅−𝑘 , (7)

𝑓 𝛿𝑘
(

𝑥+𝑘
)

= 𝑓𝑅
(

𝑢𝛿𝑘
(

𝑥+𝑘
)

, 𝑢𝛿𝑘+1
(

𝑥+𝑘
))

≡ 𝑓𝑅+𝑘 , (8)

where 𝑓𝑅
(

𝑢−, 𝑢+
)

is an appropriate Riemann flux, a function of extrap-
olated values of the numerical solution at each edge of neighbouring
elements. In what follows, the dependence on time is dropped for
simplicity of notation. The reconstructed flux is

𝑓 𝛿𝑘 (𝑥) = 𝑓 𝛿𝐷𝑘 (𝑥) + 𝑓 𝑐𝑘 (𝑥) , (9)

where 𝑓 𝑐𝑘 (𝑥) is a correction flux polynomial, defined as

𝑓 𝑐𝑘 (𝑥) =
(

𝑓𝑅−𝑘 − 𝑓 𝛿𝐷𝑘
(

𝑥−𝑘
))

𝑔𝐿(𝑥) +
(

𝑓𝑅+𝑘 − 𝑓 𝛿𝐷𝑘
(

𝑥+𝑘
))

𝑔𝑅(𝑥). (10)

The flux correction should be close to zero in the interior of each
element, and 𝑔𝐿(𝑥) and 𝑔𝑅(𝑥) are the correction functions, which must
satisfy the following constraints

𝑔𝐿
(

𝑥−𝑘
)

= 1, 𝑔𝐿
(

𝑥+𝑘
)

= 0, (11)

𝑔
(

𝑥−
)

= 0, 𝑔
(

𝑥+
)

= 1. (12)
3

𝑅 𝑘 𝑅 𝑘
To advance the numerical solution in time, the following differential
equation must be solved

𝜕𝑢𝛿𝑘
𝜕𝑡

+
𝜕𝑓 𝛿𝑘
𝜕𝑥

= 0. (13)

Substituting the Eqs. (9) and (10) into (13) yields in

𝜕𝑢𝛿𝑘
𝜕𝑡

+
𝜕𝑓 𝛿𝐷𝑘
𝜕𝑥

+
(

𝑓𝑅−𝑘 − 𝑓 𝛿𝐷𝑘
(

𝑥−𝑘
)) 𝜕𝑔𝐿(𝑥𝑘)

𝜕𝑥
+
(

𝑓𝑅+𝑘 − 𝑓 𝛿𝐷𝑘
(

𝑥+𝑘
)) 𝜕𝑔𝑅(𝑥𝑘)

𝜕𝑥
= 0.

(14)

As stated earlier, FR is a single framework capable of recovering
various schemes. There are three factors that FR relies on for such a
property. The location of the solution points, the approximate Riemann
solver in obtaining the common interface fluxes, 𝑓𝑅−𝑘 and 𝑓𝑅+𝑘 , and the
choice of the correction functions, 𝑔𝑅 and 𝑔𝐿. The choice of the solution
point locations plays a key role in the stability and accuracy properties
of the scheme when the flux is non-linear. However, in the case of linear
fluxes, it only affects initial projection error when using a collocation
projection of the initial condition onto polynomial space [46]. The
choice of Riemann solver influences the amount of numerical dissipa-
tion introduced by the spatial discretization. In the context of ILES, this
dissipation is responsible for reducing or eliminating a pile-up of kinetic
energy in high-frequency modes. In this study, we use a Rusanov/Lax–
Friedrichs flux at the interface between elements and note that previous
work has explored the properties of different Riemann solvers in this
context [47]. Hence, it is important to note that the filters proposed in
this study may not be optimal for different Riemann solvers. Depending
on the choice of correction function, one can recover the DG, SD, and
SV methods, or continuous families of linearly stable schemes [22].
Huynh [22] showed that by choosing 𝑔𝐿 and 𝑔𝑅 as the right and left
Radau polynomials, the collocation based nodal DG scheme will be
recovered, which is the scheme used in the current study.

2.2. Lifting Collocation Penalty Formulation

The FR framework can also extend to multiple dimensions using
the Lifting Collocation Penalty (LCP) formulation [45]. Consider the
general form of a hyperbolic conservation law
𝜕𝑢
𝜕𝑡

+∇∇∇.𝑓𝑓𝑓 (𝑢) = 0. (15)

A weighting function, W , is defined to ensure a unique solution exists
for Eq. (15). Following the FR approach [22] and its extension to
simplex element types [45], Eq. (15) is re-written as

𝜕𝑢𝛿𝑘
𝜕𝑡

+∇∇∇ ⋅ 𝑓𝑓𝑓 𝛿𝑘 + 𝜗𝑘 = 0, (16)

where 𝜗𝑘 is a correction field on the element 𝛺𝑘. The correction field
is analogous to the divergence of the correction functions in the FR
approach, which enforces continuity of the flux polynomial across
element interfaces.

Eq. (16) must be satisfied at each solution point, 𝑥𝑥𝑥𝑘,𝑖, i.e.,

𝑑𝑢𝛿𝑘,𝑖
𝑑𝑡

+
(

∇∇∇ ⋅ 𝑓𝑓𝑓 𝛿𝑘
)

𝑥𝑥𝑥𝑘,𝑖
+ 𝜗𝑘,𝑖 = 0, (17)

here for elements with straight faces

𝑘,𝑖 =
1

|

|

𝛺𝑘
|

|

∑

F∈𝜕𝛺𝑘

∑

𝑗
𝛼𝑖,F ,𝑗

[

𝑓𝑅
]

F ,𝑗 𝑆F , (18)

where F denotes the faces of the element 𝛺𝑘, 𝑗 is the index for flux
points, 𝛼𝑖,F ,𝑗 are constant lifting coefficients,

[

𝑓𝑅
]

F ,𝑗 is the difference
between a common Riemann flux at point 𝑗 and the value of the
internal flux, and 𝑆F is the area of the face F . The lifting coefficients
are computed using W , and are independent of both geometry and
the solution. A number of different energy stable schemes, such as
SD, SV, and DG, can be recovered based on the specification of these
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Fig. 2. Orthonormal basis function and solution and flux points for quadrilateral
element types and  = 2.

lifting coefficients. In this study, DG is recovered by using the lifting
coefficients based on the nodal basis functions.

In order to make FR simpler and more efficient, all operations are
commonly performed in a reference space, and all elements, 𝛺𝑘, are
transformed from the physical domain 𝑥𝑥𝑥 to this standard reference
space 𝜉𝜉𝜉, using a one-to-one mapping function, 𝑀 , as

𝑥 =𝑀 (𝜉𝜉𝜉) , 𝜉𝜉𝜉 =𝑀−1 (𝑥𝑥𝑥) . (19)

A nodal polynomial representation of degree 𝑚 of the mapping func-
tion, 𝑀 , is defined, using the mapping points

𝑥𝛿𝑘 (𝜉𝜉𝜉) =
𝑁𝑚
∑

𝑖
𝑥𝑘,𝑖𝜙𝑚,𝑘,𝑖 (𝜉𝜉𝜉) , (20)

where 𝑥𝑥𝑥𝛿𝑘 (𝜉𝜉𝜉) is the interpolated physical location, 𝑁𝑚 is the number of
mapping points, and 𝑥𝑘,𝑖 is the physical location of the mapping points.
The Jacobian determinant of this transformation at any point is

𝐽 =
|

|

|

|

𝜕𝑥𝑥𝑥
𝜕𝜉𝜉𝜉

|

|

|

|

. (21)

liasing errors are mainly due to either the non-linearity of the equa-
ions or mapping curved elements into the reference space [48]. In
he case of curved elements, the Jacobian of the isoparametric map-
ing is a non-constant, non-linear polynomial, which introduces a
eometrical-aliasing source [44].

The solution and flux polynomials are interpolated, similar to 1D
ormulation, using the nodal basis functions. An example of nodal basis
unction for a quadrilateral element is shown in Fig. 2, along with the
ocations of solution and flux points of the same element.

. Filtering

.1. Polynomial representation

Polynomials can be represented in different equivalent forms, in-
luding nodal and modal. Nodal in a sense that the polynomial is built
sing the value of the solution at nodes, and modal in a sense of or-
hogonal polynomial modes. The general form of these representations
f the solution, omitting the element index for brevity, is

𝛿(𝜉𝜉𝜉, 𝑡) =
𝑁𝑝
∑

𝑖=1
𝑢𝛿𝑖 (𝑡)𝜙𝑖(𝜉𝜉𝜉), (22)

𝛿(𝜉𝜉𝜉, 𝑡) =
𝑁𝑝
∑

𝑖=1
𝑢̂𝛿𝑖 (𝑡)𝜓𝑖(𝜉𝜉𝜉), (23)

here 𝑢𝛿𝑖 is the nodal coefficient or the numerical solution values
t each solution point in the reference space, 𝑢̂𝛿𝑖 is the 𝑖th modal
oefficient, 𝜙𝑖(𝜉𝜉𝜉) is the nodal basis function at the 𝑖th solution point,
nd 𝜓𝑖(𝜉𝜉𝜉) is the 𝑖th orthonormal basis function. These orthonormal basis
unctions can be written as a weighted summation of monomial terms
4

Fig. 3. Pascal’s triangle for two dimensional elements.

Fig. 4. Legendre polynomials for  = 5 in a reference element [−1, 1].

from Pascal’s triangle, shown in Fig. 3. In the 1D case, the nodal and
orthonormal basis functions are the well-known Lagrange and Legendre
polynomials, respectively. These polynomials are shown in Figs. 1 and
4 for  = 5. Example 2D orthonormal modal basis functions are also
hown in Fig. 5.

To switch back and forth between these two polynomial represen-
ations, the Vandermonde matrix is used
𝛿 = 𝑉 𝑢̂𝑢𝑢𝛿 , (24)

𝑢̂𝛿 = 𝑉 −1𝑢𝑢𝑢𝛿 , (25)

where 𝑢𝑢𝑢𝛿 and 𝑢̂𝑢𝑢𝛿 are the vector of nodal and modal coefficients, respec-
tively, and 𝑉 is the Vandermonde matrix, which is defined as [43]

𝑉𝑖𝑗 = 𝜓𝑗 (𝜉𝜉𝜉𝑖), (26)

where 𝜓𝑗 (𝜉𝜉𝜉𝑖) is the 𝑗th orthonormal basis function evaluated at the 𝑖th
solution point.

3.2. A time-step independent filtering operator

The modal form of representing a polynomial is analogous to a
Fourier series, where the higher modes are responsible for the oscilla-
tory behaviour of that polynomial, as seen in Fig. 4. In order to stabilize
a simulation, spurious oscillations of the numerical solution should
be damped. Hence, a filtering operator can be applied to the vector
of modal coefficients, to reduce the energy of the higher modes. The
decay of the expansion coefficients, 𝑢̂𝑢𝑢𝛿 , has a relation with the accuracy
of the scheme, and proper selection of these coefficients can improve
accuracy [49]. In the FR approach, the desired form of a polynomial
representation is the nodal form. Thus, the filtering operator should be
defined such that it filters the modal coefficients and returns the filtered
nodal coefficients. This filtering operation can be cast as [43]

𝐹 = 𝑉 𝛬𝑉 −1, (27)

where 𝛬 is a modal filtering matrix, which is defined in the next section.

Using this definition, switching back and forth between different forms
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Fig. 5. The orthonormal modal basis functions in 2D for quadrilateral elements and  = 2.
of polynomial representations is done in a single operation via the
filtering matrix 𝐹 .

The filtering operator is typically applied after each time-step,
making the observed filter strength dependent on the time-step size.
Thus, changing the size of the time-step results in a different observed
strength of the filtering over a fixed time interval. This makes the
selection of an appropriate modal filter case dependent. To avoid this,
we propose a new filtering operator whose strength is normalized by
the time-step size. The normalized form of the 𝛬 matrix is

𝛬∗ = 𝛬
1
𝑛 , (28)

where 𝑛 is

𝑛 =
𝑇𝑐ℎ𝑎𝑟
𝛥𝑡

, (29)

where 𝑇𝑐ℎ𝑎𝑟 is a characteristic time relevant to the flow of interest, and
𝛥𝑡 is the time-step size. Therefore, the filtering operator normalized by
the time-step size will be

𝐹 ∗ = 𝑉 𝛬∗𝑉 −1. (30)

In the conventional filtering approach, 𝐹 is applied after each time-
step, making the cumulative filtering strength over a fixed simulation
time dependent on the time-step size. The proposed filtering opera-
tor, 𝐹 ∗, is also applied after each time-step; however, its strength is
5

normalized by the time-step size. Thus, applying 𝐹 ∗ after each time-
step for 𝑛 times is analogous to applying 𝐹 after each characteristic
time, 𝑇𝑐ℎ𝑎𝑟, only once, eliminating the time-step dependence of the
proposed filter. Hence, the observed filter strength remains constant, no
matter the time-step size, 𝛥𝑡. The spectral properties of a fully-discrete
scheme are dependent on both space and time discretizations. However,
provided the temporal integration is of a sufficiently high order, and the
time-step is not in the vicinity of the stability limit, the behaviour of
the scheme is primarily governed by the spatial operator [33]. Thus,
the proposed formulation is independent of the temporal integration
scheme, provided the integration meets the aforementioned conditions.
Otherwise, the following optimization might yield different parameters.

3.3. Filtering matrix

The modal filtering matrix is a square diagonal matrix with filtering
function values on its main diagonal, defined as

𝛬𝑖𝑖 = 𝜎(𝜂), 𝑖 = 1,… , 𝑁𝑝 (31)

where 𝜎 is the filtering function and 𝜂 is the summation of the expo-
nents of the highest degree term of the corresponding orthonormal basis
function, obtained using Pascal’s triangle. To find the aforementioned
terms in 3D, Pascal’s triangle is used in multiple layers.
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The commonly used exponential filtering function [43] is used in
this study which is defined as

𝜎(𝜂) =

⎧

⎪

⎨

⎪

⎩

1 0 ≤ 𝜂 ≤ 𝜂𝑐
𝑒𝑥𝑝

(

−𝛼
(

𝜂−𝜂𝑐
𝜂𝑚𝑎𝑥−𝜂𝑐

)𝑠)
𝜂𝑐 ≤ 𝜂 ≤ 𝜂𝑚𝑎𝑥

0 𝜂 > 𝜂𝑚𝑎𝑥

, (32)

where 𝛼 and 𝑠 are the damping and strength parameters of the filter
function, respectively, 𝜂𝑚𝑎𝑥 is the maximum summation of the expo-
ents of the orthonormal basis, and 𝜂𝑐 is the cut-off degree. In order to
educe the effects of filter on the convergence rate, the smoothness of
he filtering function must exceed that of the solution [49]. Thus, the
xponential filter function is an appealing choice. The relation between
hese filtering parameters is shown in Fig. 6, where 𝜂∗ = 𝜂∕𝜂𝑚𝑎𝑥. It can

be seen that the filtering function will move towards higher degrees by
increasing the values of 𝑠 and/or 𝜂𝑐 and decreasing 𝛼.

3.4. Parameter optimization

The strength of the filter is dependent on the choice of 𝑠, 𝜂𝑐 , and 𝛼.
Excessive filtering will reduce accuracy, while insufficient dissipation
will fail to stabilize the solution. To find suitable filtering parameters,
the Taylor–Green Vortex (TGV) has been studied in the limit of an
infinite Reynolds number. In the TGV problem, the Navier–Stokes
equations are solved in 3D to simulate a freely decaying turbulent flow
in a periodic domain, generating a detailed turbulent spectrum. The
initial flow field for the TGV is specified as [24]

𝑢 = +𝑈0 sin(𝑥∕𝐿) cos(𝑦∕𝐿) cos(𝑧∕𝐿), (33)

𝑣 = −𝑈0 cos(𝑥∕𝐿) sin(𝑦∕𝐿) cos(𝑧∕𝐿), (34)

𝑤 = 0, (35)

𝑃 = 𝑃0 +
𝜌0𝑈2

0
16

(cos (2𝑥∕𝐿) + cos (2𝑦∕𝐿)) (cos (2𝑧∕𝐿) + 2) , (36)

𝜌 = 𝑃
𝑅𝑇0

, (37)

where 𝑢, 𝑣, and 𝑤 are the velocity components, 𝑃 is the pressure, 𝜌 is
the density, and 𝐿 = 1 is the characteristic length. The constant values
of characteristic velocity, 𝑈0, and temperature, 𝑇0, are specified to have
the desired flow Mach number.

In this section, the TGV is used to explore stability in the limit of
infinite Reynolds number, so the Euler equations are used in lieu of
Navier–Stokes, with solution polynomials of degree  = 3, 4, and 5. The
omain for this study is a periodic cube with dimensions of 0 ≤ 𝑥, 𝑦, 𝑧 ≤
𝜋𝐿, meshed with hexahedral elements, and the total number of DoF is
63. A very coarse mesh is used to have an initially unstable simulation,
nd the filtering operator is applied using a wide range of filtering
arameters. There are three tuning parameters in the filtering operator,
s shown in Eq. (32). To optimize the filtering operator, we attempt
o find a set of filtering parameters that can be used for general flows,
lleviating the need to tune these parameters. The strength parameter is
et to fixed values of 𝑠 = [2, 4, 8, 16] throughout this study. As mentioned
arlier, we are interested in filtering the highest orders of the solution
olynomial. Thus, the cut-off degree, 𝜂𝑐 , is set equal to the maximum
ummation of the exponents of the orthonormal basis, 𝜂𝑚𝑎𝑥. Then, as the
irst step, using Algorithm 1, the highest possible 𝜂𝑐 is found for a very
arge value of 𝛼 that stabilizes the simulation. Following this, finding
he lower and upper bounds of the damping parameter 𝛼 is the second
tep. This step is done using Algorithms 2 and 3. Finally, the last step
s to find the optimized value of 𝛼, using the bisection method shown
n Algorithm 4. The optimized values of 𝜂𝑐 and 𝛼 are found by running

more than 14000 simulations using bisection over the aforementioned
range of parameter 𝑠, solution polynomial degrees, and Mach numbers.
The damping parameter, 𝛼, is optimized to have the weakest filtering
operator, to preserve accuracy, while stabilizing the TGV simulation.
6

Stability is defined as a solution that maintains physical solutions up t
Fig. 6. The effect of different parameters on the filter function.

to 20𝑇𝑐ℎ𝑎𝑟, where a physical solution is interpreted as one having only
non-negative and/or non-imaginary values of pressure and density, and
𝑇𝑐ℎ𝑎𝑟 = 𝐿∕𝑈0 is the characteristic time of the TGV. This is studied at
different Mach numbers ranging from 𝑀𝑎 = 0.1 to 0.5.

The threshold of stability, determined via bisection, for different
solution polynomial degrees and Mach number of 𝑀𝑎 = 0.1 are given
n Fig. 7 and for all other Mach numbers are given in Figs. 31–34 in
ppendix A. Any value for parameters on the left side of each line in

hese figures is considered a weak filter that fails at stabilization, while



Computers and Fluids 237 (2022) 105301M. Hamedi and B.C. Vermeire

f

e

e

Algorithm 1: Finding the maximum possible value of 𝜂𝑐
𝛼 = 1016;
or  = [3, 4, 5] do
for 𝑀𝑎𝑐ℎ = [0.1, 0.2, 0.3, 0.4, 0.5] do

for 𝑠 = [2, 4, 8, 16] do
𝜂𝑐 = 𝜂𝑚𝑎𝑥;
𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 0;
while stability = 0 do

Run TGV Simulation;
if TGV Simulation is stable then

𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 1;
else

𝜂𝑐 = 𝜂𝑚𝑎𝑥 − 1;
end

end
end

end
nd

Algorithm 2: Finding the lower bound of 𝛼
for  = [3, 4, 5] do

for 𝑀𝑎𝑐ℎ = [0.1, 0.2, 0.3, 0.4, 0.5] do
for 𝑠 = [2, 4, 8, 16] do

𝛼𝑙 = 104;
𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 0;
while stability = 0 do

Run TGV Simulation;
if TGV Simulation is unstable then

𝛼𝑙 = 10𝛼𝑙;
else

𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 1;
𝛼𝑙 = 𝛼𝑙∕10;

end
end

end
end

end

Algorithm 3: Finding the upper bound of 𝛼
for  = [3, 4, 5] do

for 𝑀𝑎𝑐ℎ = [0.1, 0.2, 0.3, 0.4, 0.5] do
for 𝑠 = [2, 4, 8, 16] do

𝛼𝑢 = 1016;
𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 1;
while stability = 1 do

Run TGV Simulation;
if TGV Simulation is stable then

𝛼𝑢 = 𝛼𝑢∕10;
else

𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 0;
𝛼𝑢 = 10𝛼𝑢;

end
end

end
end

nd

parameter values on the right side of each line form a filtering function
that stabilizes the simulation.
7

Algorithm 4: Finding the optimum value of 𝛼
for  = [3, 4, 5] do

for 𝑀𝑎𝑐ℎ = [0.1, 0.2, 0.3, 0.4, 0.5] do
for 𝑠 = [2, 4, 8, 16] do

define 𝑡𝑜𝑙;
while 𝛼𝑢 − 𝛼𝑙 > 𝑡𝑜𝑙 do

𝛼 = 1
2 (𝛼𝑙 + 𝛼𝑢);

Run TGV Simulation;
if TGV Simulation is stable then

𝛼𝑢 = 𝛼;
else

𝛼𝑙 = 𝛼;
end

end
end

end
end

In the available literature, the predominant correction function that
is used in FR is the one that recovers the DG scheme. Thus, the DG
scheme is chosen in this study, and we note that our filters are opti-
mized specifically for this scheme and would not be generally suitable
for other correction functions. Oscillatory behaviour of the solution is
typically due to the highest modes in the solution polynomial. Hence,
it is beneficial to damp only the higher-order modes if possible. There-
fore, low-pass filtering in the spectral domain is preferred [50]. One
hypothesis of this work is that, by selectively filtering only the higher-
order modes, we may be able to preserve the high-order accuracy of
the scheme, which is explored in the next section. Furthermore, it is
expected that these higher-order modes are responsible for significant
aliasing error since their products are of a much higher polynomial
degree than those used to represent the solution. Hence, we consider
the best set of filtering parameters as those that damp the higher modes
as much as possible while leaving the lower modes unchanged. All of
the possible filtering functions for 𝑀𝑎 = 0.1 are shown in Fig. 8, where
the best filtering function under these criteria is highlighted. These
plots for filtering operators at different Mach numbers are shown in
Figs. 35–38 in Appendix B, and the corresponding filtering parameters
for all of the optimum filter functions of different strengths are given
in Tables 4–6 in Appendix C. An interesting correlation is observed
from these figures is that the spectrum, in general, is split into 2∕3 and
as  increases it tends towards 1∕2, which is similar to the 2∕3 rule
of dealiasing [51]. The optimum time-step independent filter function
for solution polynomials of degree  = 3, 4, and 5 are determined
at different filter strengths ranging from 𝛬𝑀𝑎𝑐ℎ=0.1 to 𝛬𝑀𝑎𝑐ℎ=0.5. The
proposed filtering functions are verified in the following section.

4. Verification and validation

The objective of the current section is to verify that the proposed
optimal stabilizing filters converge to super-accuracy and improve
stability for practical simulations of turbulent flows. To demonstrate
super-accuracy for non-linear problems, modally filtered LES and non-
filtered ILES of an isentropic vortex will be compared. Following this,
non-filtered ILES of the TGV will be compared with LES using the
optimized modal filters.

4.1. Non-linear super-accuracy

Super-accuracy of the optimal modal filtering operators for non-
linear problems is verified using an isentropic vortex advection test case
in two dimensions. This case is used due to its simple implementation

and known exact analytical solution at all times. The advection of
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𝑃

Fig. 7. Plots of stability for different  ’s at 𝛬𝑀𝑎𝑐ℎ=0.1.

the vortex with the mean flow is simulated using the Euler equations,

where the exact entropy remains constant everywhere in the domain.

The isentropic vortex has an initial flow field of

𝜌 =

[

1 −
𝑆2
𝑣𝑀𝑎2(𝛾 − 1)𝑒2𝜑

8𝜋2

]
1
𝛾−1

, (38)

𝑢 =
𝑆𝑣𝑦𝑒𝜑 , (39)
8

2𝜋𝑅
Fig. 8. Plots of all possible filter functions for different  ’s and the selected ones at
𝛬𝑀𝑎𝑐ℎ=0.1.

𝑣 = 1 −
𝑆𝑣𝑥𝑒𝜑

2𝜋𝑅
, (40)

=
𝜌𝛾

𝛾𝑀𝑎2
, (41)

where 𝜌 is the density, 𝑢 and 𝑣 are the velocity components, 𝑃 is the

pressure, 𝑆𝑣 = 13.5 is the vortex strength, 𝑀𝑎 = 0.4 is the free-stream

Mach number, 𝛾 = 1.4 is the heat capacity ratio, 𝑅 = 1.5 is the radius
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Table 1
A summary of order of accuracy for different simulations.
 Grid size Order of accuracy

Coarse Fine Non-filtered Filtered

3 40 × 40 60 × 60 7.626557 7.626587
4 40 × 40 60 × 60 9.104274 9.108797
5 20 × 20 40 × 40 10.426575 10.633066

of the vortex, and 𝜑 is

=
1 − 𝑥2 − 𝑦2

2𝑅2
. (42)

The computational domain is a square of length [𝐿𝑥, 𝐿𝑦] = [20, 20],
where the centre of vortex is initialized at the coordinate origin.
The boundary conditions are specified as periodic in the 𝑦-direction,
and Riemann invariant in the 𝑥-direction. The modal filters from the
three-dimensional configuration are projected onto this 2D basis for
quadrilateral elements, and different numbers of elements in the 𝑥
and 𝑦 directions are used. The classical four-stage fourth-order Runge–
Kutta scheme is used for time discretization. The simulation is run
for a sufficient number of cycles of the vortex through the domain to
reach a consistent level of super-accuracy. This corresponded to final
simulation times of 𝑡 = 600, 14000, and 30000 using a time-step size of
𝑑𝑡 = 0.005, 0.002, and 0.00125 for the  = 3, 4, and 5, respectively. The
𝐿2 norm of the density error is computed when the vortex returns to
its initial position, and is used to evaluate the accuracy of each filter.
The 𝐿2 norm of the error is defined as [52]

‖𝜌 (𝑡) ‖2 =

√

∫

2

−2 ∫

2

−2

(

𝜌𝛿 (𝑥𝑥𝑥, 𝑡) − 𝜌 (𝑥𝑥𝑥, 𝑡)
)2 𝑑𝑥𝑥𝑥, (43)

where ‖𝜌 (𝑡) ‖2 is the 𝐿2 norm of the density error as a function of
time, 𝜌𝛿 (𝑥𝑥𝑥, 𝑡) is the numerical solution, and 𝜌 (𝑥𝑥𝑥, 𝑡) is the analytical
solution. The solution and flux points are located at tensor products
of Gauss points, and an approximate Rusanov Riemann solver, is used.
The Rusanov type Riemann solver, used in this study, introduces the
inviscid numerical interface flux as

𝐹 𝑖𝑛𝑣 =
𝑛̂𝑛𝑛𝐿
2

⋅
(

𝑓 𝑖𝑛𝑣𝐿 + 𝑓 𝑖𝑛𝑣𝑅
)

+ 𝑠
2
(

𝑢𝐿 + 𝑢𝑅
)

, (44)

here 𝑛̂𝑛𝑛𝐿 is the normal vector associated with the face, 𝑓 𝑖𝑛𝑣𝐿 and 𝑓 𝑖𝑛𝑣𝑅
are the inviscid fluxes at the left and right interfaces, respectively, and
𝑢𝐿 and 𝑢𝑅 are the two discontinuous solution states at an interface. An
estimate of the maximum wave speed, 𝑠, is

𝑠 =

√

𝛾
(

𝑃𝐿 + 𝑃𝑅
)

𝜌𝐿 + 𝜌𝑅
+ 1

2
|𝑛̂𝑛𝑛𝐿 ⋅

(

𝑣𝑣𝑣𝐿 + 𝑣𝑣𝑣𝑅
)

|. (45)

A summary of the orders of accuracy for the filtered and non-filtered
simulations of different solution polynomial degrees are provided in
Table 1, illustrating that the order of accuracy of the filtered simulation
is almost identical to that of the non-filtered simulation, and both
converge with super-accuracy.

4.2. The Taylor–Green Vortex

In order to study the suitability of the proposed filters for LES, the
Navier–Stokes equations are solved using the TGV case. Several authors
have analysed the TGV using discontinuous high-order methods. The
TGV has been studied using FR [53,54], modal DG [55,56], recovery-
based DG method [57], DG Spectral Element method [58–60], and is
studied in this paper using the FR approach.

The rate of kinetic energy dissipation along with enstrophy are
computed to validate the accuracy of the optimal filtering functions.
The temporal evolution of total kinetic energy integrated over the
domain is

𝐸𝑘 =
1 𝜌𝑉𝑉𝑉 ⋅ 𝑉𝑉𝑉 𝑑𝛺, (46)
9

𝜌0𝛺 ∫𝛺 2
where 𝐸𝑘 is the total kinetic energy, 𝛺 is the volume of the domain, 𝜌 is
the density, and 𝑉𝑉𝑉 is the velocity vector. The energy-based dissipation
rate is then defined as

𝜖(𝐸𝑘) = −
𝑑𝐸𝑘
𝑑𝑡

. (47)

The temporal evolution of enstrophy is

𝜀 = 1
𝜌0𝛺 ∫𝛺

𝜌𝜔𝜔𝜔 ⋅𝜔𝜔𝜔
2

𝑑𝛺, (48)

where 𝜔𝜔𝜔 is the vorticity. And the vorticity-based dissipation rate is [61]

𝜖(𝜀) =
2𝜇
𝜌
𝜀. (49)

In the incompressible limit, the difference between the physical dissi-
pation, 𝜖(𝜀), and the observed dissipation, 𝜖(𝐸𝑘), is due to numerical
dissipation.

The vortices are initialized at 𝑅𝑒 = 1600 based on the length scale
𝐿 and velocity scale 𝑈0, and the Mach number of 𝑀𝑎 = 0.1. The
omain is a periodic cube of dimensions 0 ≤ 𝑥, 𝑦, 𝑧 ≤ 2𝜋𝐿, with
ominally 643 total number of DoF. Each simulation is run with  =
, 4, and 5 using different strengths of the filtering function optimized
or 𝑀𝑎 = 0.1, 0.2, 0.3, 0.4, and 0.5 along with a non-filtered simulation.
he results are compared to the reference DNS of Van Rees [61] with an
xtended time history provided through the high-order workshop [29].
he solution and flux points are located at tensor products of Gauss
oints, and the Rusanov and second method of Bassi and Rebay (BR2)
re used for the common inviscid and viscous flux. Plots of the kinetic
nergy evolution in time, the rate of 𝐸𝑘 dissipation based on both 𝐸𝑘,
nd 𝜀 for different solution polynomial degrees of  = 3, 4, and 5 using
ifferent filtering functions are given in Figs. 9–11. The kinetic energy
pectrum of high wavenumbers with different strengths of the filtering
perator along with the non-filtered simulation are computed utilizing
spectral code by Navah [62], and is shown in Fig. 12. Also isosurfaces
f Q-criterion for the TGV at 20𝑇𝑐ℎ𝑎𝑟 for different solution polynomial
egrees are shown, with and without the filtering operator, in Fig. 13.

In Fig. 9, it can be seen that the dissipation of 𝐸𝑘 is slightly higher
or the filtered simulation, and the 𝐸𝑘 is always less than the DNS
esults except for  = 3. The higher dissipation of a filtered solution
s expected, since the filtering operator is removing high wavenumber
omponents of the flow field. The energy-based rate of 𝐸𝑘 dissipation is
hown in Fig. 10. In general, the filtered simulations are slightly more
issipative than the non-filtered simulation, an effect that increases
ith filter strength. Since more energy is dissipated earlier on in the

iltered simulations, this trend reverses in the later time periods.
Fig. 11 shows that the enstrophy-based 𝐸𝑘 dissipation is slightly

nder-predicted in the filtered simulations. Based on Eq. (48), the small
cale structures are enstrophy dominated structures in the turbulent
low, which are filtered when the filtering operator is active. Hence,
he lower enstrophy observed in the filtered simulations. Since the
iltering operator dissipates the energy of the higher modes, we expect
here will be less energy in high wavenumbers for filtered simulations.
his is depicted in Fig. 12, where the kinetic energy spectrum of
igh wavenumbers is given at 20𝑇𝑐ℎ𝑎𝑟. It can be seen that for stronger
iltering operators, there is in fact reduced energy in higher modes, as
xpected. Finally, from Fig. 13 showing isosurfaces of Q-criterion, it is
vident that when the filtering operator is applied, the general scale of
he turbulent structures is larger than the non-filtered simulations.

In summary, we observe that the filtering operators tend to slightly
ncrease the amount of numerical dissipation for all polynomial de-
rees. This is primarily due to damping of high-frequency modes in the
olution. Nevertheless, the overall accuracy at each polynomial degree
nd for all filtering strengths is not impacted significantly.
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Fig. 9. The evolution of kinetic energy in time for different solution polynomials.
10
Fig. 10. The energy-based rate of kinetic energy dissipation for different solution
polynomials.
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Fig. 11. The enstrophy-based rate of kinetic energy dissipation for different solution
polynomials.
11
Fig. 12. The kinetic energy spectrum of high wavenumbers at 20𝑇𝑐ℎ𝑎𝑟 for different
solution polynomial degrees.
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Fig. 13. Isosurfaces of Q-criterion for the TGV at 20𝑇𝑐ℎ𝑎𝑟 for different polynomial degrees.
12
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4.3. The Taylor–Green Vortex on a non-linear mesh

Abe et al. [63] and Trojak et al. [64] studied the TGV on a fully
non-linear mesh. In this study, the effects of filtering is investigated
on non-linear elements. The case setup is the same as the previous
section; however, the solution points are perturbed using the following
equations [64]

𝑥′ = 𝑥 + 𝑙
𝑛𝑥
𝐴 sin

(𝑘𝑔𝜋𝑦
𝑙

)

sin
(𝑘𝑔𝜋𝑧

𝑙

)

, (50)

𝑦′ = 𝑦 + 𝑙
𝑛𝑦
𝐴 sin

(𝑘𝑔𝜋𝑥
𝑙

)

sin
(𝑘𝑔𝜋𝑧

𝑙

)

, (51)

𝑧′ = 𝑧 + 𝑙
𝑛𝑧
𝐴 sin

(𝑘𝑔𝜋𝑥
𝑙

)

sin
(𝑘𝑔𝜋𝑦

𝑙

)

, (52)

where 𝑘𝑔 is the grid wavenumber and 𝐴 is the grid wave amplitude,
and in keeping with Abe et al. [63] and Trojak et al. [64] we will use
𝑘𝑔 = 4 and 𝐴 = 0.4. 𝑙 is the length of the computational domain and is
equal to 2𝜋, and 𝑛𝑖 is the number of elements in the 𝑖-direction. Fig. 14
shows a sub-sample of the non-linear mesh.

Fig. 14. A sub-sample of the computational domain.

The evolution of kinetic energy in time, the energy and enstrophy-
based rate of kinetic energy dissipation, and the kinetic energy spec-
trum of high wavenumbers are obtained similar to the previous section,
and are shown in Figs. 15, 16, 17, and 18, respectively. The results of
this section is similar to the TGV using a linear mesh, which shows that
the filtering operator can also be applied with fully non-linear meshes.

5. Numerical examples

In this section, a previously unstable turbulent channel test case,
along with an airfoil at a high angle of attack are studied. The objective
is to explore the stabilization properties of the proposed filters and their
accuracy for a set of benchmark problems. In this section, the strongest
filtering operator, 𝛬𝑀𝑎𝑐ℎ=0.5, is used. The rationale behind this choice is
that the strongest filter would be expected to have the most significant
impact on the results.
13
Fig. 15. The evolution of kinetic energy in time for different solution polynomials, for
the fully non-linear mesh.
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Fig. 16. The energy-based rate of kinetic energy dissipation for different solution
polynomials, for the fully non-linear mesh.
14
Fig. 17. The enstrophy-based rate of kinetic energy dissipation for different solution
polynomials, for the fully non-linear mesh.
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Fig. 18. The kinetic energy spectrum of high wavenumbers at 20𝑇𝑐ℎ𝑎𝑟 for different
solution polynomial degrees, for the fully non-linear mesh.
15
5.1. Turbulent channel

Fully-developed turbulent channel flow is studied as validation for
wall-bounded turbulent flows, due to its simple geometry and boundary
conditions. The fully-developed assumption means that all statistical
properties of the flow are independent of time. In turbulent channel
studies, it is conventional to use the friction velocity defined as

𝑢𝜏 =
√

𝜏𝑤
𝜌
, (53)

where 𝜏𝑤 is the wall shear stress.
Kim, Moin and Moser [65] originally performed DNS of turbulent

channel flow. In the present research, ILES and LES, using the proposed
optimized modal filter, are performed and compared to this DNS result.
The domain is of size [𝐿𝑥, 𝐿𝑦, 𝐿𝑧] = [2𝜋𝛿, 2𝛿, 𝜋𝛿] with periodic boundary
conditions in the streamwise (𝑥) and spanwise (𝑧) directions and a no-
slip boundary condition is applied at the walls, where 𝛿 = 1 is the
channel half-width. The initial conditions are Mach number of 𝑀𝑎 =
0.3 and bulk velocity Reynolds number of 𝑅𝑒𝑏 = 6800 based on the
channel half-width. A mean pressure gradient is added such that the
friction velocity Reynolds number will converge to 𝑅𝑒𝜏 = 395. The grid
points in the 𝑦-direction are computed using the following hyperbolic
function [66]

𝑦𝑗 =
1
2𝛼

tanh
[(

−1 +
2𝑗

𝐷𝑜𝐹𝑦

)

tanh−1 𝛼
]

+ 0.5, (54)

where 𝛼 = 0.96 is the stretching factor and 𝐷𝑜𝐹𝑦 is the number of solu-
tion points in the 𝑦 direction. The present simulations are summarized
in Table 2.

In this study, we used 3∕8 of the total number of DoF required for
DNS in all directions to simulate the turbulent channel with polynomial
degrees of  = 3, 4, and 5. This simulation is stable for  = 3
nd 4, so it is run with and without the filtering to compare filtered
imulations with non-filtered ones. The filtering operator is applied
or the simulation with  = 5 to stabilize it. The strongest filtering
perator, 𝛬𝑀𝑎𝑐ℎ=0.5, is used for all filtered simulations.

Velocity Power Spectral Density (PSD) for each simulation are given
n Figs. 20–22 for different non-dimensional distances from the wall,
hown in Fig. 19. The mean velocity, Reynolds stresses, and root-mean-
quared velocity fluctuations are then given in Figs. 23, 24, and 25,
espectively, for different polynomial degrees. Finally, isosurfaces of
-criterion are shown in Fig. 26 for all simulations.

Fig. 19. The surfaces used for velocity PSD computation.
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Fig. 20. The velocity power spectral density at different locations for  = 3.
Fig. 21. The velocity power spectral density at different locations for  = 4.
16
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Fig. 22. The velocity power spectral density at different locations for  = 5.
Table 2
Parameters of the simulations where 𝑁𝑒𝑖 is the number of elements in 𝑖th-direction and 𝛥𝑖+ is the distance of the first grid
point off the boundary in 𝑖th-direction non-dimensionalized by 𝑢𝜏 and the kinematic viscosity, 𝜈.

 𝐹 𝑖𝑙𝑡𝑒𝑟 𝑅𝑒𝜏
𝐿𝑥
𝛿

𝐿𝑦
𝛿

𝐿𝑧
𝛿

𝑇𝑓 𝛥𝑥+ 𝛥𝑦+ 𝛥𝑧+ 𝑁𝑒𝑥 𝑁𝑒𝑦 𝑁𝑒𝑧 𝐷𝑜𝐹

3 off 395 2𝜋 2 𝜋 170 25.85 0.92 17.23 24 18 18 497664
3 on 395 2𝜋 2 𝜋 170 25.85 0.92 17.23 24 18 18 497664
4 off 395 2𝜋 2 𝜋 170 24.82 0.88 16.55 20 15 15 562500
4 on 395 2𝜋 2 𝜋 170 24.82 0.88 16.55 20 15 15 562500
5 on 395 2𝜋 2 𝜋 170 25.85 0.92 17.23 16 12 12 497664
F
t
s

L
s
d
a

5

n
a
E
s
e
f
o

From the velocity power spectral density plots for  = 3 and 4,
hown in Figs. 20 and 21, it can be seen that for the filtered simulations,
nly the higher modes have reduced power relative to the non-filtered
imulations, which shows that filtering only affects the higher modes,
s by design. Fig. 22, shows the velocity power spectral density for
= 5 at different locations, in which less energy is observed at high

avenumbers, compared to low wavenumbers. In Figs. 23(a) and 23(b),
e can see excellent agreement between the mean velocity profile of

he filtered and non-filtered simulations for  = 3 and 4. Similar
ehaviour is observed in Fig. 23(c) between the filtered simulation and
he DNS results for  = 5.

The Reynolds stresses shown in Figs. 24 and 25 also show good
greement between the ILES/LES results and the DNS. The use of
iltering has negligible effect on the results, and no loss in accuracy
s seen for filtered simulations. Importantly, even more accurate results
re obtained with filtering in the near wall region compared to the non-
iltered simulation for  = 3, as shown in Fig. 25(a), for 10 < 𝑦+ < 40.
he maximum streamwise velocity fluctuation occurs at 𝑦+ ≈ 12 for
oth filtered and non-filtered simulations, consistent with the DNS, as
17

bserved in Fig. 25. Finally, isosurfaces of Q-criterion are shown in s
ig. 26, where it can be seen that by applying the filtering operator,
he turbulent structures are qualitatively larger than the non-filtered
imulation for  = 3 and 4.

In summary, we find that the filtering operators were suitable for
ES of turbulent channel flow. They stabilized an otherwise unstable
imulation, and produced results consistent with the reference DNS
ata. Also, in the case of  = 3, the filter produced slightly more
ccurate results, even though it was not required for stability.

.2. Airfoil

Flow over a NACA0020 airfoil at an angle of attack of 𝛼 = 20, Mach
umber of 𝑀𝑎 = 0.2, and 𝑅𝑒 = 20000 is simulated both without filtering
nd with the strongest filter operator, 𝛬𝑀𝑎𝑐ℎ=0.5. A second order P-
RK scheme is used for marching in time [67]. The mesh used for this
imulation is shown in Fig. 27, which consists of 68590 hexahedral
lements. The domain has a periodic span of 0.45𝑐, which is sufficient
or span-wise decorrelation [68]. Furthermore, the first solution point
ff the wall is located at 𝑦+ ≈ 0.7, within the viscous sublayer. Each

imulation is started with  = 1, and then restarted at  = 3 and run
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Fig. 23. Mean velocity profile for different solution polynomial degrees.
18
Fig. 24. Reynolds shear stresses for different solution polynomial degrees.
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Table 3
Comparison between the non-filtered, filtered, and DNS results.
Simulation 𝐶𝐿 𝐶𝐷
DNS [68] 0.64 0.35
Non-filtered ILES 0.639 0.353
Modally-filtered LES 0.651 0.357

for 100 convective times. Statistical averages are computed over the
final 80 convective times.

Isosurfaces of Q-criterion coloured by velocity magnitude are shown
in Fig. 28. Qualitatively, the large scale structures show similar be-
haviour, while spurious small scale structures appear to be damped in
the filtered simulation.

Time-averaged values, 𝐶𝐿 and 𝐶𝐷 (see Fig. 29), are compared to
DNS results in Table 3, which shows excellent agreement between the
DNS and both filtered LES and non-filtered ILES results. The time-
averaged pressure coefficient for both the filtered and non-filtered
simulations are shown in Fig. 30, where the results are nearly iden-
tical. In conclusion, applying the optimized filtering operator does not
significantly degrade solution accuracy, and the results are in excellent
agreement with the non-filtered simulation and reference DNS data.

6. Conclusions

In this study a new filtering operator was proposed for stabilization
of high-order LES. This operator is novel in the sense that its strength
is made independent of the time-step size. Moreover, all of the filtering
operators are optimized to yield the minimum filter strength for sta-
bilization, and preserve the order of accuracy for solution polynomial
of degrees  = 3, 4, and 5 while maintaining stability in the limit
f an infinite Reynolds number TGV. Numerical results show that the
roposed filter stabilizes otherwise unstable simulations, while main-
aining good agreement with non-filtered stable solutions. Hence, these
iltering functions are an appealing stabilization technique for high-
rder spatial discretizations. Future work will focus on their application
o higher-Reynolds number LES to determine the range of applications
or which they can provide effective stabilization. It is well-known that
nother important factor for the stability of the FR approach is the
hoice of a correction function [24], and an interesting area of future
ork would be to explore optimizing filters for different correction

unctions, and even different high-order numerical schemes such as SD
nd/or DG.
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Table 4
The optimum filter function parameters of different strengths for  = 3.
 = 3

𝛬𝑀𝑎𝑐ℎ=0.1

𝜂𝑐 5
𝑠 16
𝛼 217075.2759552002

𝛬𝑀𝑎𝑐ℎ=0.2

𝜂𝑐 5
𝑠 16
𝛼 1202391046.135873

𝛬𝑀𝑎𝑐ℎ=0.3

𝜂𝑐 5
𝑠 16
𝛼 917162317.9408722

𝛬𝑀𝑎𝑐ℎ=0.4

𝜂𝑐 5
𝑠 16
𝛼 1392939017.611743

𝛬𝑀𝑎𝑐ℎ=0.5

𝜂𝑐 5
𝑠 16
𝛼 1457812117.278677

Table 5
The optimum filter function parameters of different strengths for  = 4.
 = 4

𝛬𝑀𝑎𝑐ℎ=0.1

𝜂𝑐 7
𝑠 16
𝛼 291498213413.2662

𝛬𝑀𝑎𝑐ℎ=0.2

𝜂𝑐 7
𝑠 16
𝛼 1665739102108.521

𝛬𝑀𝑎𝑐ℎ=0.3

𝜂𝑐 7
𝑠 16
𝛼 2314754521287.192

𝛬𝑀𝑎𝑐ℎ=0.4

𝜂𝑐 7
𝑠 16
𝛼 2668366061332.971

𝛬𝑀𝑎𝑐ℎ=0.5

𝜂𝑐 6
𝑠 16
𝛼 15565248612801.27
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Table 6
The optimum filter function parameters of different strengths for  = 5.
 = 5

𝛬𝑀𝑎𝑐ℎ=0.1

𝜂𝑐 8
𝑠 16
𝛼 187367342908422.5

𝛬𝑀𝑎𝑐ℎ=0.2

𝜂𝑐 8
𝑠 16
𝛼 86245118555321.83

𝛬𝑀𝑎𝑐ℎ=0.3

𝜂𝑐 6
𝑠 16
𝛼 18566388095.02125

𝛬𝑀𝑎𝑐ℎ=0.4

𝜂𝑐 6
𝑠 16
𝛼 48469598837.49486

𝛬𝑀𝑎𝑐ℎ=0.5

𝜂𝑐 6
𝑠 16
𝛼 321516181278.2288
20
Fig. 25. Root-mean-squared velocity fluctuations for different solution polynomial
degrees.
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Fig. 26. Isosurfaces of Q-criterion, coloured by velocity, for all of the simulations.

Fig. 27. Mesh used for the simulation.
21
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Fig. 28. The isosurfaces of Q-criterion after 200𝑇𝑐ℎ𝑎𝑟.
22
Fig. 29. The lift and drag coefficients evolution in time.

Fig. 30. The time-averaged pressure coefficient on the surface of the airfoil.
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Fig. 31. Plots of stability for different  ’s at 𝛬𝑀𝑎𝑐ℎ=0.2.

Fig. 32. Plots of stability for different  ’s at 𝛬𝑀𝑎𝑐ℎ=0.3.
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Fig. 33. Plots of stability for different  ’s at 𝛬𝑀𝑎𝑐ℎ=0.4.

Fig. 34. Plots of stability for different  ’s at 𝛬𝑀𝑎𝑐ℎ=0.5.
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Fig. 35. Plots of all possible filter functions for different  ’s and the best one at 𝛬𝑀𝑎𝑐ℎ=0.2.

Fig. 36. Plots of all possible filter functions for different  ’s and the best one at 𝛬𝑀𝑎𝑐ℎ=0.3.
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Fig. 37. Plots of all possible filter functions for different  ’s and the best one at 𝛬𝑀𝑎𝑐ℎ=0.4.

Fig. 38. Plots of all possible filter functions for different  ’s and the best one at 𝛬𝑀𝑎𝑐ℎ=0.5.
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